Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
subprocess.run( | |
'pip install flash-attn --no-build-isolation', | |
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, | |
shell=True | |
) | |
import os | |
import re | |
import time | |
import torch | |
import spaces | |
import gradio as gr | |
from threading import Thread | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
BitsAndBytesConfig, | |
TextIteratorStreamer | |
) | |
# Configuration Constants | |
MODEL_ID = "Daemontatox/PathFinderAi3.0" | |
DEFAULT_SYSTEM_PROMPT = """You are a highly intelligent reasoning assistant. For every question, follow these steps and use tags to structure your response for clarity and transparency: | |
[Understand]: Analyze the question to identify key details and clarify the goal. | |
[Plan]: Outline a logical, step-by-step approach to address the question or problem. | |
[Reason]: Execute the plan, applying logical reasoning, calculations, or analysis to reach a conclusion. Document each step clearly. | |
[Reflect]: Review the reasoning and the final answer to ensure it is accurate, complete, and adheres to the principle of openness. | |
[Respond]: Present a well-structured and transparent answer, enriched with supporting details as needed. | |
Use these tags as headers in your response to make your thought process easy to follow and aligned with the principle of openness.""" | |
# UI Configuration | |
TITLE = "<h1><center>AI Reasoning Assistant</center></h1>" | |
PLACEHOLDER = "Ask me anything! I'll think through it step by step." | |
CSS = """ | |
.duplicate-button { | |
margin: auto !important; | |
color: white !important; | |
background: black !important; | |
border-radius: 100vh !important; | |
} | |
h3 { | |
text-align: center; | |
} | |
.message-wrap { | |
overflow-x: auto; | |
} | |
.message-wrap p { | |
margin-bottom: 1em; | |
} | |
.message-wrap pre { | |
background-color: #f6f8fa; | |
border-radius: 3px; | |
padding: 16px; | |
overflow-x: auto; | |
} | |
.message-wrap code { | |
background-color: rgba(175,184,193,0.2); | |
border-radius: 3px; | |
padding: 0.2em 0.4em; | |
font-family: monospace; | |
} | |
.custom-tag { | |
color: #0066cc; | |
font-weight: bold; | |
} | |
.chat-area { | |
height: 500px !important; | |
overflow-y: auto !important; | |
} | |
""" | |
def initialize_model(): | |
"""Initialize the model with appropriate configurations""" | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.bfloat16, | |
bnb_4bit_use_double_quant=True | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
if tokenizer.pad_token_id is None: | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
torch_dtype=torch.float16, | |
device_map="cuda", | |
attn_implementation="flash_attention_2", | |
quantization_config=quantization_config | |
) | |
return model, tokenizer | |
def format_text(text): | |
"""Format text with proper spacing and tag highlighting (but keep tags visible)""" | |
tag_patterns = [ | |
(r'<Thinking>', '\n<Thinking>\n'), | |
(r'</Thinking>', '\n</Thinking>\n'), | |
(r'<Critique>', '\n<Critique>\n'), | |
(r'</Critique>', '\n</Critique>\n'), | |
(r'<Revising>', '\n<Revising>\n'), | |
(r'</Revising>', '\n</Revising>\n'), | |
(r'<Final>', '\n<Final>\n'), | |
(r'</Final>', '\n</Final>\n') | |
] | |
formatted = text | |
for pattern, replacement in tag_patterns: | |
formatted = re.sub(pattern, replacement, formatted) | |
formatted = '\n'.join(line for line in formatted.split('\n') if line.strip()) | |
return formatted | |
def format_chat_history(history): | |
"""Format chat history for display, keeping tags visible""" | |
formatted = [] | |
for user_msg, assistant_msg in history: | |
formatted.append(f"User: {user_msg}") | |
if assistant_msg: | |
formatted.append(f"Assistant: {assistant_msg}") | |
return "\n\n".join(formatted) | |
def create_examples(): | |
"""Create example queries for the UI""" | |
return [ | |
"Explain the concept of artificial intelligence.", | |
"How does photosynthesis work?", | |
"What are the main causes of climate change?", | |
"Describe the process of protein synthesis.", | |
"What are the key features of a democratic government?", | |
"Explain the theory of relativity.", | |
"How do vaccines work to prevent diseases?", | |
"What are the major events of World War II?", | |
"Describe the structure of a human cell.", | |
"What is the role of DNA in genetics?" | |
] | |
def chat_response( | |
message: str, | |
history: list, | |
chat_display: str, | |
system_prompt: str, | |
temperature: float = 1.0, | |
max_new_tokens: int = 4000, | |
top_p: float = 0.8, | |
top_k: int = 40, | |
penalty: float = 1.2, | |
): | |
"""Generate chat responses, keeping tags visible in the output""" | |
conversation = [ | |
{"role": "system", "content": system_prompt} | |
] | |
for prompt, answer in history: | |
conversation.extend([ | |
{"role": "user", "content": prompt}, | |
{"role": "assistant", "content": answer} | |
]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template( | |
conversation, | |
add_generation_prompt=True, | |
return_tensors="pt" | |
).to(model.device) | |
streamer = TextIteratorStreamer( | |
tokenizer, | |
timeout=60.0, | |
skip_prompt=True, | |
skip_special_tokens=True | |
) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
max_new_tokens=max_new_tokens, | |
do_sample=False if temperature == 0 else True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
repetition_penalty=penalty, | |
streamer=streamer, | |
) | |
buffer = "" | |
with torch.no_grad(): | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
history = history + [[message, ""]] | |
for new_text in streamer: | |
buffer += new_text | |
formatted_buffer = format_text(buffer) | |
history[-1][1] = formatted_buffer | |
chat_display = format_chat_history(history) | |
yield history, chat_display | |
def process_example(example: str) -> tuple: | |
"""Process example query and return empty history and updated display""" | |
return [], f"User: {example}\n\n" | |
def main(): | |
"""Main function to set up and launch the Gradio interface""" | |
global model, tokenizer | |
model, tokenizer = initialize_model() | |
with gr.Blocks(css=CSS, theme="soft") as demo: | |
gr.HTML(TITLE) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_classes="duplicate-button" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
chat_history = gr.State([]) | |
chat_display = gr.TextArea( | |
value="", | |
label="Chat History", | |
interactive=False, | |
elem_classes=["chat-area"], | |
) | |
message = gr.TextArea( | |
placeholder=PLACEHOLDER, | |
label="Your message", | |
lines=3 | |
) | |
with gr.Row(): | |
submit = gr.Button("Send") | |
clear = gr.Button("Clear") | |
with gr.Accordion("⚙️ Advanced Settings", open=False): | |
system_prompt = gr.TextArea( | |
value=DEFAULT_SYSTEM_PROMPT, | |
label="System Prompt", | |
lines=5, | |
) | |
temperature = gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.2, | |
label="Temperature", | |
) | |
max_tokens = gr.Slider( | |
minimum=128, | |
maximum=32000, | |
step=128, | |
value=4000, | |
label="Max Tokens", | |
) | |
top_p = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
step=0.1, | |
value=0.8, | |
label="Top-p", | |
) | |
top_k = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=40, | |
label="Top-k", | |
) | |
penalty = gr.Slider( | |
minimum=1.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.2, | |
label="Repetition Penalty", | |
) | |
examples = gr.Examples( | |
examples=create_examples(), | |
inputs=[message], | |
outputs=[chat_history, chat_display], | |
fn=process_example, | |
cache_examples=False, | |
) | |
# Set up event handlers | |
submit_click = submit.click( | |
chat_response, | |
inputs=[ | |
message, | |
chat_history, | |
chat_display, | |
system_prompt, | |
temperature, | |
max_tokens, | |
top_p, | |
top_k, | |
penalty, | |
], | |
outputs=[chat_history, chat_display], | |
show_progress=True, | |
) | |
message.submit( | |
chat_response, | |
inputs=[ | |
message, | |
chat_history, | |
chat_display, | |
system_prompt, | |
temperature, | |
max_tokens, | |
top_p, | |
top_k, | |
penalty, | |
], | |
outputs=[chat_history, chat_display], | |
show_progress=True, | |
) | |
clear.click( | |
lambda: ([], ""), | |
outputs=[chat_history, chat_display], | |
show_progress=True, | |
) | |
submit_click.then(lambda: "", outputs=message) | |
message.submit(lambda: "", outputs=message) | |
return demo | |
if __name__ == "__main__": | |
demo = main() | |
demo.launch() |