hf-llm-api-pt / apis /chat_api.py
radinhas's picture
Update apis/chat_api.py
23d3e7f
raw
history blame
12.3 kB
import argparse
import uvicorn
import sys
import os
import io
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import time
import json
from typing import List
import torch
import logging
import string
import random
import base64
import re
import requests
from utils.enver import enver
import shutil
from fastapi import FastAPI, Response, File, UploadFile, Form
from fastapi.encoders import jsonable_encoder
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel, Field
from sse_starlette.sse import EventSourceResponse
from utils.logger import logger
from networks.message_streamer import MessageStreamer
from messagers.message_composer import MessageComposer
from googletrans import Translator
from io import BytesIO
from gtts import gTTS
from fastapi.middleware.cors import CORSMiddleware
class ChatAPIApp:
def __init__(self):
self.app = FastAPI(
docs_url="/",
title="HuggingFace LLM API",
swagger_ui_parameters={"defaultModelsExpandDepth": -1},
version="1.0",
)
self.setup_routes()
def get_available_langs(self):
f = open('apis/lang_name.json', "r")
self.available_models = json.loads(f.read())
return self.available_models
class TranslateCompletionsPostItem(BaseModel):
from_language: str = Field(
default="en",
description="(str) `Detect`",
)
to_language: str = Field(
default="fa",
description="(str) `en`",
)
input_text: str = Field(
default="Hello",
description="(str) `Text for translate`",
)
def translate_completions(self, item: TranslateCompletionsPostItem):
translator = Translator()
f = open('apis/lang_name.json', "r")
available_langs = json.loads(f.read())
from_lang = 'en'
to_lang = 'en'
for lang_item in available_langs:
if item.to_language == lang_item['code']:
to_lang = item.to_language
break
translated = translator.translate(item.input_text, dest=to_lang)
item_response = {
"from_language": translated.src,
"to_language": translated.dest,
"text": item.input_text,
"translate": translated.text
}
json_compatible_item_data = jsonable_encoder(item_response)
return JSONResponse(content=json_compatible_item_data)
def translate_ai_completions(self, item: TranslateCompletionsPostItem):
translator = Translator()
#print(os.getcwd())
f = open('apis/lang_name.json', "r")
available_langs = json.loads(f.read())
from_lang = 'en'
to_lang = 'en'
for lang_item in available_langs:
if item.to_language == lang_item['code']:
to_lang = item.to_language
if item.from_language == lang_item['code']:
from_lang = item.from_language
if to_lang == 'auto':
to_lang = 'en'
if from_lang == 'auto':
from_lang = translator.detect(item.input_text).lang
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
logging.warning("GPU not found, using CPU, translation will be very slow.")
time_start = time.time()
#TRANSFORMERS_CACHE
pretrained_model = "facebook/m2m100_1.2B"
cache_dir = "models/"
tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir)
model = M2M100ForConditionalGeneration.from_pretrained(
pretrained_model, cache_dir=cache_dir
).to(device)
model.eval()
tokenizer.src_lang = from_lang
with torch.no_grad():
encoded_input = tokenizer(item.input_text, return_tensors="pt").to(device)
generated_tokens = model.generate(
**encoded_input, forced_bos_token_id=tokenizer.get_lang_id(to_lang)
)
translated_text = tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)[0]
time_end = time.time()
translated = translated_text
item_response = {
"from_language": from_lang,
"to_language": to_lang,
"text": item.input_text,
"translate": translated,
"start": str(time_start),
"end": str(time_end)
}
json_compatible_item_data = jsonable_encoder(item_response)
return JSONResponse(content=json_compatible_item_data)
class TranslateAiPostItem(BaseModel):
model: str = Field(
default="t5-base",
description="(str) `Model Name`",
)
from_language: str = Field(
default="en",
description="(str) `translate from`",
)
to_language: str = Field(
default="fa",
description="(str) `translate to`",
)
input_text: str = Field(
default="Hello",
description="(str) `Text for translate`",
)
def ai_translate(self, item:TranslateAiPostItem):
MODEL_MAP = {
"t5-base": "t5-base",
"t5-small": "t5-small",
"t5-large": "t5-large",
"t5-3b": "t5-3b",
"mbart-large-50-many-to-many-mmt": "facebook/mbart-large-50-many-to-many-mmt",
"nllb-200-distilled-600M": "facebook/nllb-200-distilled-600M",
"madlad400-3b-mt": "jbochi/madlad400-3b-mt",
"default": "t5-base",
}
if item.model in MODEL_MAP.keys():
target_model = item.model
else:
target_model = "default"
real_name = MODEL_MAP[target_model]
read_model = AutoModelForSeq2SeqLM.from_pretrained(real_name)
tokenizer = AutoTokenizer.from_pretrained(real_name)
#translator = pipeline("translation", model=read_model, tokenizer=tokenizer, src_lang=item.from_language, tgt_lang=item.to_language)
translate_query = (
f"translation_{item.from_language}_to_{item.to_language}"
)
translator = pipeline(translate_query)
result = translator(item.input_text)
item_response = {
"statue": 200,
"result": result,
}
json_compatible_item_data = jsonable_encoder(item_response)
return JSONResponse(content=json_compatible_item_data)
class DetectLanguagePostItem(BaseModel):
input_text: str = Field(
default="Hello, how are you?",
description="(str) `Text for detection`",
)
def detect_language(self, item: DetectLanguagePostItem):
translator = Translator()
detected = translator.detect(item.input_text)
item_response = {
"lang": detected.lang,
"confidence": detected.confidence,
}
json_compatible_item_data = jsonable_encoder(item_response)
return JSONResponse(content=json_compatible_item_data)
class TTSPostItem(BaseModel):
input_text: str = Field(
default="Hello",
description="(str) `Text for TTS`",
)
from_language: str = Field(
default="en",
description="(str) `TTS language`",
)
def text_to_speech(self, item: TTSPostItem):
try:
audioobj = gTTS(text = item.input_text, lang = item.from_language, slow = False)
fileName = ''.join(random.SystemRandom().choice(string.ascii_uppercase + string.digits) for _ in range(10));
fileName = fileName + ".mp3";
mp3_fp = BytesIO()
#audioobj.save(fileName)
#audioobj.write_to_fp(mp3_fp)
#buffer = bytearray(mp3_fp.read())
#base64EncodedStr = base64.encodebytes(buffer)
#mp3_fp.read()
#return Response(content=mp3_fp.tell(), media_type="audio/mpeg")
return StreamingResponse(audioobj.stream())
except:
item_response = {
"status": 400
}
json_compatible_item_data = jsonable_encoder(item_response)
return JSONResponse(content=json_compatible_item_data)
def setup_routes(self):
for prefix in ["", "/v1"]:
self.app.get(
prefix + "/langs",
summary="Get available languages",
)(self.get_available_langs)
self.app.post(
prefix + "/translate",
summary="translate text",
)(self.translate_completions)
self.app.post(
prefix + "/translate/ai",
summary="translate text with ai",
)(self.translate_ai_completions)
self.app.post(
prefix + "/detect",
summary="detect language",
)(self.detect_language)
self.app.post(
prefix + "/tts",
summary="text to speech",
)(self.text_to_speech)
class ArgParser(argparse.ArgumentParser):
def __init__(self, *args, **kwargs):
super(ArgParser, self).__init__(*args, **kwargs)
self.add_argument(
"-s",
"--server",
type=str,
default="0.0.0.0",
help="Server IP for HF LLM Chat API",
)
self.add_argument(
"-p",
"--port",
type=int,
default=23333,
help="Server Port for HF LLM Chat API",
)
self.add_argument(
"-d",
"--dev",
default=False,
action="store_true",
help="Run in dev mode",
)
self.args = self.parse_args(sys.argv[1:])
app = ChatAPIApp().app
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.post("/transcribe")
async def whisper_transcribe(
audio_file: UploadFile = File(description="Audio file for transcribe"),
language: str = Form(),
model: str = Form(),
):
MODEL_MAP = {
"whisper-small": "openai/whisper-small",
"whisper-medium": "openai/whisper-medium",
"whisper-large": "openai/whisper-large",
"default": "openai/whisper-small",
}
AUDIO_MAP = {
"audio/wav": "audio/wav",
"audio/mpeg": "audio/mpeg",
"audio/x-flac": "audio/x-flac",
}
item_response = {
"statue": 200,
"result": "",
"start": 0,
"end": 0
}
if audio_file.content_type in AUDIO_MAP.keys():
if model in MODEL_MAP.keys():
target_model = model
else:
target_model = "default"
real_name = MODEL_MAP[target_model]
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=real_name,
chunk_length_s=30,
device=device,
)
time_start = time.time()
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe")
text = pipe(audio_file)["text"]
time_end = time.time()
item_response["status"] = 200
item_response["result"] = text
item_response["start"] = time_start
item_response["end"] = time_end
else:
item_response["status"] = 400
item_response["result"] = 'Acceptable files: audio/wav,audio/mpeg,audio/x-flac'
return item_response
if __name__ == "__main__":
args = ArgParser().args
if args.dev:
uvicorn.run("__main__:app", host=args.server, port=args.port, reload=True)
else:
uvicorn.run("__main__:app", host=args.server, port=args.port, reload=False)
# python -m apis.chat_api # [Docker] on product mode
# python -m apis.chat_api -d # [Dev] on develop mode