|
import torch |
|
import torch.nn as nn |
|
|
|
from torch import Tensor |
|
from torchvision.models.video.resnet import BasicBlock, Bottleneck, Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D |
|
from typing import Callable, List, Sequence, Type, Union |
|
|
|
|
|
|
|
model_urls = { |
|
"r2plus1d_34_8_ig65m": "https://github.com/moabitcoin/ig65m-pytorch/releases/download/v1.0.0/r2plus1d_34_clip8_ig65m_from_scratch-9bae36ae.pth", |
|
"r2plus1d_34_32_ig65m": "https://github.com/moabitcoin/ig65m-pytorch/releases/download/v1.0.0/r2plus1d_34_clip32_ig65m_from_scratch-449a7af9.pth", |
|
"r2plus1d_34_8_kinetics": "https://github.com/moabitcoin/ig65m-pytorch/releases/download/v1.0.0/r2plus1d_34_clip8_ft_kinetics_from_ig65m-0aa0550b.pth", |
|
"r2plus1d_34_32_kinetics": "https://github.com/moabitcoin/ig65m-pytorch/releases/download/v1.0.0/r2plus1d_34_clip32_ft_kinetics_from_ig65m-ade133f1.pth", |
|
"r2plus1d_152_ig65m_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/r2plus1d_152_ig65m_from_scratch_f106380637.pth", |
|
"r2plus1d_152_ig_ft_kinetics_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/r2plus1d_152_ft_kinetics_from_ig65m_f107107466.pth", |
|
"r2plus1d_152_sports1m_32frms": "", |
|
"r2plus1d_152_sports1m_ft_kinetics_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/r2plus1d_152_ft_kinetics_from_sports1m_f128957437.pth", |
|
"ir_csn_152_ig65m_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/irCSN_152_ig65m_from_scratch_f125286141.pth", |
|
"ir_csn_152_ig_ft_kinetics_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/irCSN_152_ft_kinetics_from_ig65m_f126851907.pth", |
|
"ir_csn_152_sports1m_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/irCSN_152_Sports1M_from_scratch_f99918785.pth", |
|
"ir_csn_152_sports1m_ft_kinetics_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/irCSN_152_ft_kinetics_from_Sports1M_f101599884.pth", |
|
"ip_csn_152_ig65m_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/ipCSN_152_ig65m_from_scratch_f130601052.pth", |
|
"ip_csn_152_ig_ft_kinetics_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/ipCSN_152_ft_kinetics_from_ig65m_f133090949.pth", |
|
"ip_csn_152_sports1m_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/ipCSN_152_Sports1M_from_scratch_f111018543.pth", |
|
"ip_csn_152_sports1m_ft_kinetics_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/ipCSN_152_ft_kinetics_from_Sports1M_f111279053.pth", |
|
} |
|
|
|
|
|
class VideoResNet(nn.Module): |
|
def __init__( |
|
self, |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
conv_makers: Sequence[Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]]], |
|
layers: List[int], |
|
stem: Callable[..., nn.Module], |
|
num_classes: int = 400, |
|
zero_init_residual: bool = False, |
|
) -> None: |
|
"""Generic resnet video generator. |
|
|
|
Args: |
|
block (Type[Union[BasicBlock, Bottleneck]]): resnet building block |
|
conv_makers (List[Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]]]): generator |
|
function for each layer |
|
layers (List[int]): number of blocks per layer |
|
stem (Callable[..., nn.Module]): module specifying the ResNet stem. |
|
num_classes (int, optional): Dimension of the final FC layer. Defaults to 400. |
|
zero_init_residual (bool, optional): Zero init bottleneck residual BN. Defaults to False. |
|
""" |
|
super().__init__() |
|
self.inplanes = 64 |
|
|
|
self.stem = stem() |
|
|
|
self.layer1 = self._make_layer(block, conv_makers[0], 64, layers[0], stride=1) |
|
self.layer2 = self._make_layer(block, conv_makers[1], 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, conv_makers[2], 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, conv_makers[3], 512, layers[3], stride=2) |
|
|
|
self.avgpool = nn.AdaptiveAvgPool3d((1, 1, 1)) |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv3d): |
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm3d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, 0, 0.01) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
nn.init.constant_(m.bn3.weight, 0) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
x = self.stem(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = self.avgpool(x) |
|
x = self.fc(x) |
|
|
|
return x |
|
|
|
def _make_layer( |
|
self, |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
conv_builder: Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]], |
|
planes: int, |
|
blocks: int, |
|
stride: int = 1, |
|
) -> nn.Sequential: |
|
downsample = None |
|
|
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
ds_stride = conv_builder.get_downsample_stride(stride) |
|
downsample = nn.Sequential( |
|
nn.Conv3d(self.inplanes, planes * block.expansion, kernel_size=1, stride=ds_stride, bias=False), |
|
nn.BatchNorm3d(planes * block.expansion), |
|
) |
|
layers = [] |
|
layers.append(block(self.inplanes, planes, conv_builder, stride, downsample)) |
|
|
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes, conv_builder)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
|
|
def _generic_resnet(arch, pretrained=False, progress=False, **kwargs): |
|
model = VideoResNet(**kwargs) |
|
|
|
|
|
for m in model.modules(): |
|
if isinstance(m, nn.BatchNorm3d): |
|
m.eps = 1e-3 |
|
m.momentum = 0.9 |
|
|
|
if pretrained: |
|
state_dict = torch.hub.load_state_dict_from_url( |
|
model_urls[arch], progress=progress |
|
) |
|
model.load_state_dict(state_dict) |
|
|
|
return model |
|
|
|
|
|
class BasicStem_Pool(nn.Sequential): |
|
def __init__(self): |
|
super(BasicStem_Pool, self).__init__( |
|
nn.Conv3d( |
|
3, |
|
64, |
|
kernel_size=(3, 7, 7), |
|
stride=(1, 2, 2), |
|
padding=(1, 3, 3), |
|
bias=False, |
|
), |
|
nn.BatchNorm3d(64), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)), |
|
) |
|
|
|
|
|
class R2Plus1dStem_Pool(nn.Sequential): |
|
"""R(2+1)D stem is different than the default one as it uses separated 3D convolution |
|
""" |
|
|
|
def __init__(self): |
|
super(R2Plus1dStem_Pool, self).__init__( |
|
nn.Conv3d( |
|
3, |
|
45, |
|
kernel_size=(1, 7, 7), |
|
stride=(1, 2, 2), |
|
padding=(0, 3, 3), |
|
bias=False, |
|
), |
|
nn.BatchNorm3d(45), |
|
nn.ReLU(inplace=True), |
|
nn.Conv3d( |
|
45, |
|
64, |
|
kernel_size=(3, 1, 1), |
|
stride=(1, 1, 1), |
|
padding=(1, 0, 0), |
|
bias=False, |
|
), |
|
nn.BatchNorm3d(64), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)), |
|
) |
|
|
|
|
|
class Conv3DDepthwise(nn.Conv3d): |
|
def __init__(self, in_planes, out_planes, midplanes=None, stride=1, padding=1): |
|
|
|
assert in_planes == out_planes |
|
super(Conv3DDepthwise, self).__init__( |
|
in_channels=in_planes, |
|
out_channels=out_planes, |
|
kernel_size=(3, 3, 3), |
|
stride=stride, |
|
padding=padding, |
|
groups=in_planes, |
|
bias=False, |
|
) |
|
|
|
@staticmethod |
|
def get_downsample_stride(stride): |
|
return (stride, stride, stride) |
|
|
|
|
|
class IPConv3DDepthwise(nn.Sequential): |
|
def __init__(self, in_planes, out_planes, midplanes, stride=1, padding=1): |
|
|
|
assert in_planes == out_planes |
|
super(IPConv3DDepthwise, self).__init__( |
|
nn.Conv3d(in_planes, out_planes, kernel_size=1, bias=False), |
|
nn.BatchNorm3d(out_planes), |
|
|
|
Conv3DDepthwise(out_planes, out_planes, None, stride), |
|
) |
|
|
|
@staticmethod |
|
def get_downsample_stride(stride): |
|
return (stride, stride, stride) |
|
|
|
|
|
class Conv2Plus1D(nn.Sequential): |
|
def __init__(self, in_planes, out_planes, midplanes, stride=1, padding=1): |
|
|
|
midplanes = (in_planes * out_planes * 3 * 3 * 3) // ( |
|
in_planes * 3 * 3 + 3 * out_planes |
|
) |
|
super(Conv2Plus1D, self).__init__( |
|
nn.Conv3d( |
|
in_planes, |
|
midplanes, |
|
kernel_size=(1, 3, 3), |
|
stride=(1, stride, stride), |
|
padding=(0, padding, padding), |
|
bias=False, |
|
), |
|
nn.BatchNorm3d(midplanes), |
|
nn.ReLU(inplace=True), |
|
nn.Conv3d( |
|
midplanes, |
|
out_planes, |
|
kernel_size=(3, 1, 1), |
|
stride=(stride, 1, 1), |
|
padding=(padding, 0, 0), |
|
bias=False, |
|
), |
|
) |
|
|
|
@staticmethod |
|
def get_downsample_stride(stride): |
|
return (stride, stride, stride) |
|
|