Ultralearning / app.py
DHEIVER's picture
Update app.py
f2660e3 verified
raw
history blame
10.1 kB
# config.py
import os
from dotenv import load_dotenv
load_dotenv()
class Config:
DEBUG = os.getenv('DEBUG', 'False').lower() == 'true'
LOG_LEVEL = os.getenv('LOG_LEVEL', 'INFO')
MODELS_CACHE_DIR = os.getenv('MODELS_CACHE_DIR', './models')
HISTORY_FILE = os.getenv('HISTORY_FILE', 'learning_path_history.json')
MAX_AUDIO_LENGTH = int(os.getenv('MAX_AUDIO_LENGTH', '600')) # seconds
MAX_TEXT_LENGTH = int(os.getenv('MAX_TEXT_LENGTH', '1000'))
SUPPORTED_AUDIO_FORMATS = ['.wav', '.mp3', '.ogg', '.flac']
# Visualization settings
MAX_TOPICS = int(os.getenv('MAX_TOPICS', '10'))
MAX_SUBTOPICS = int(os.getenv('MAX_SUBTOPICS', '5'))
FIGURE_DPI = int(os.getenv('FIGURE_DPI', '300'))
# Model settings
MODEL_TRANSCRIBER = os.getenv('MODEL_TRANSCRIBER', 'openai/whisper-base')
MODEL_GENERATOR = os.getenv('MODEL_GENERATOR', 'gpt2')
# Retry settings
MAX_RETRIES = int(os.getenv('MAX_RETRIES', '3'))
RETRY_DELAY = int(os.getenv('RETRY_DELAY', '1'))
# utils.py
import logging
import json
from typing import Dict, Any, Optional, List, Tuple
import os
from datetime import datetime
from config import Config
class Utils:
@staticmethod
def setup_logging() -> logging.Logger:
logger = logging.getLogger("LearningPathGenerator")
level = getattr(logging, Config.LOG_LEVEL)
logger.setLevel(level)
handler = logging.FileHandler("app.log")
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
@staticmethod
def save_json(data: Dict[str, Any], filename: str) -> bool:
try:
with open(filename, 'w', encoding='utf-8') as f:
json.dump(data, f, ensure_ascii=False, indent=2)
return True
except Exception as e:
logging.error(f"Error saving JSON: {str(e)}")
return False
@staticmethod
def load_json(filename: str) -> Optional[Dict[str, Any]]:
try:
with open(filename, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception as e:
logging.error(f"Error loading JSON: {str(e)}")
return None
@staticmethod
def extract_topics(analysis: str) -> Tuple[List[str], Dict[str, List[str]]]:
# Simple topic extraction logic - could be enhanced
topics = ["Main Topic", "Subtopic 1", "Subtopic 2"]
subtopics = {
"Main Topic": ["Detail 1", "Detail 2"],
"Subtopic 1": ["Point 1", "Point 2"],
"Subtopic 2": ["Item 1", "Item 2"]
}
return topics, subtopics
# models.py
from transformers import pipeline
import torch
from typing import Dict, Any
import logging
from config import Config
class ModelManager:
def __init__(self):
self.logger = logging.getLogger("ModelManager")
self.models: Dict[str, Any] = {}
self._initialize_models()
def _initialize_models(self):
try:
device = 0 if torch.cuda.is_available() else -1
self.models["transcriber"] = pipeline(
"automatic-speech-recognition",
model=Config.MODEL_TRANSCRIBER,
device=device
)
self.models["generator"] = pipeline(
"text-generation",
model=Config.MODEL_GENERATOR,
device=device
)
except Exception as e:
self.logger.error(f"Error initializing models: {str(e)}")
raise
def get_model(self, name: str) -> Any:
return self.models.get(name)
# main.py
import gradio as gr
from typing import Dict, Any
import logging
from config import Config
from utils import Utils
from models import ModelManager
from visualization import Visualizer
from datetime import datetime
class LearningPathGenerator:
def __init__(self):
self.logger = Utils.setup_logging()
self.model_manager = ModelManager()
self.history_file = Config.HISTORY_FILE
if not os.path.exists(self.history_file):
Utils.save_json([], self.history_file)
def process_audio(self,
audio_path: str,
path_name: str = "",
difficulty: str = "intermediate",
include_resources: bool = True) -> Dict[str, Any]:
try:
transcriber = self.model_manager.get_model("transcriber")
transcription = transcriber(audio_path)["text"]
generator = self.model_manager.get_model("generator")
analysis = self._generate_analysis(generator, transcription, difficulty, include_resources)
topics, subtopics = Utils.extract_topics(analysis)
mind_map = Visualizer.create_mind_map(topics, subtopics)
if path_name:
self._save_to_history(transcription, analysis, path_name)
return {
"transcription": transcription,
"analysis": analysis,
"mind_map": mind_map
}
except Exception as e:
self.logger.error(f"Processing error: {str(e)}")
return self._error_response(str(e))
def _generate_analysis(self,
generator: Any,
text: str,
difficulty: str,
include_resources: bool) -> str:
prompt = f"""
Based on the following text, create a detailed learning path
for {difficulty} level:
{text[:Config.MAX_TEXT_LENGTH]}
Learning path:
"""
response = generator(
prompt,
max_length=300,
num_return_sequences=1
)[0]["generated_text"]
if include_resources:
response += self._generate_resources()
return response
def _generate_resources(self) -> str:
return """
Recommended Resources:
1. Books:
- "Essential Guide"
- "Advanced Techniques"
2. Online Courses:
- Coursera: "Topic Specialization"
- edX: "Advanced Course"
3. Practical Resources:
- Interactive tutorials
- Practice exercises
- Real-world projects
"""
def _save_to_history(self, transcription: str, analysis: str, path_name: str):
history = Utils.load_json(self.history_file) or []
history.append({
"date": datetime.now().isoformat(),
"name": path_name,
"transcription": transcription,
"analysis": analysis
})
Utils.save_json(history, self.history_file)
def _error_response(self, error_msg: str) -> Dict[str, Any]:
return {
"transcription": f"Error: {error_msg}",
"analysis": "Could not generate analysis due to an error.",
"mind_map": None
}
def create_interface(self):
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("""
# πŸŽ“ Learning Path Generator
Upload an audio file describing your learning goals
and receive a personalized learning path with resources!
""")
with gr.Tab("Generate Path"):
with gr.Row():
with gr.Column(scale=2):
audio_input = gr.Audio(
type="filepath",
label="Audio Upload",
description="Record or upload an audio describing your goals"
)
with gr.Row():
path_name = gr.Textbox(
label="Path Name",
placeholder="Give your learning path a name (optional)"
)
difficulty = gr.Dropdown(
choices=["beginner", "intermediate", "advanced"],
value="intermediate",
label="Difficulty Level"
)
include_resources = gr.Checkbox(
label="Include Recommended Resources",
value=True
)
process_btn = gr.Button(
"Generate Learning Path",
variant="primary"
)
text_output = gr.Textbox(
label="Audio Transcription",
lines=4
)
analysis_output = gr.Textbox(
label="Analysis and Learning Path",
lines=10
)
mind_map_output = gr.Image(
label="Learning Path Mind Map"
)
process_btn.click(
fn=self.process_audio,
inputs=[audio_input, path_name, difficulty, include_resources],
outputs={
"transcription": text_output,
"analysis": analysis_output,
"mind_map": mind_map_output
}
)
return app
if __name__ == "__main__":
try:
generator = LearningPathGenerator()
app = generator.create_interface()
app.launch(debug=Config.DEBUG)
except Exception as e:
logging.error(f"Application error: {str(e)}")
raise