Spaces:
Sleeping
Sleeping
from PIL import Image, ImageOps | |
import numpy as np | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
from keras.models import load_model | |
import gradio as gr | |
# Load the model and class names outside the prediction function | |
model = load_model('keras_model.h5', compile=False) | |
class_names = [line.strip() for line in open('labels.txt', 'r')] | |
def create_plot(data): | |
sns.set_theme(style="whitegrid") | |
f, ax = plt.subplots(figsize=(5, 5)) | |
sns.set_color_codes("pastel") | |
sns.barplot(x="Total", y="Labels", data=data, label="Total", color="b") | |
sns.set_color_codes("muted") | |
sns.barplot(x="Confidence Score", y="Labels", data=data, label="Conficence Score", color="b") | |
ax.legend(ncol=2, loc="lower right", frameon=True) | |
sns.despine(left=True, bottom=True) | |
return f | |
def predict_tumor(img): | |
np.set_printoptions(suppress=True) | |
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) | |
# Resize and preprocess the input image | |
size = (224, 224) | |
image_PIL = Image.fromarray(img) | |
image = ImageOps.fit(image_PIL, size, Image.LANCZOS) | |
image_array = np.asarray(image) | |
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1 | |
data[0] = normalized_image_array | |
# Make a prediction | |
prediction = model.predict(data) | |
index = np.argmax(prediction) | |
class_name = class_names[index] | |
confidence_score = prediction[0][index] | |
c_name = class_name.strip() | |
tumor_prediction = f"Model {'detected' if c_name == 'Yes' else 'did not detect'} Tumor" | |
other_class = 'No' if c_name == 'Yes' else 'Yes' | |
# Prepare data for plotting | |
res = {"Labels": [c_name, other_class], "Confidence Score": [(confidence_score * 100), (1 - confidence_score) * 100], "Total": 100} | |
data_for_plot = pd.DataFrame.from_dict(res) | |
tumor_conf_plt = create_plot(data_for_plot) | |
return tumor_prediction, tumor_conf_plt | |
# Gradio Interface | |
with gr.Blocks(title="Brain Tumor Detection | Data Science Dojo", css="styles.css") as demo: | |
with gr.Row(): | |
with gr.Column(scale=4): | |
with gr.Row(): | |
imgInput = gr.Image() | |
with gr.Column(scale=1): | |
tumor = gr.Textbox(label='Presence of Tumor') | |
plot = gr.Plot(label="Plot") | |
submit_button = gr.Button(value="Submit") | |
submit_button.click(fn=predict_tumor, inputs=[imgInput], outputs=[tumor, plot]) | |
gr.Examples( | |
examples=["pred2.jpg", "pred3.jpg"], | |
inputs=imgInput, | |
outputs=[tumor, plot], | |
fn=predict_tumor, | |
cache_examples=True, | |
) | |
demo.launch() |