Tumor_Detection / app.py
DHEIVER's picture
Update app.py
e1af9e0 verified
from PIL import Image, ImageOps
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
from keras.models import load_model
import gradio as gr
# Load the model and class names outside the prediction function
model = load_model('keras_model.h5', compile=False)
class_names = [line.strip() for line in open('labels.txt', 'r')]
def create_plot(data):
sns.set_theme(style="whitegrid")
f, ax = plt.subplots(figsize=(5, 5))
sns.set_color_codes("pastel")
sns.barplot(x="Total", y="Labels", data=data, label="Total", color="b")
sns.set_color_codes("muted")
sns.barplot(x="Confidence Score", y="Labels", data=data, label="Conficence Score", color="b")
ax.legend(ncol=2, loc="lower right", frameon=True)
sns.despine(left=True, bottom=True)
return f
def predict_tumor(img):
np.set_printoptions(suppress=True)
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# Resize and preprocess the input image
size = (224, 224)
image_PIL = Image.fromarray(img)
image = ImageOps.fit(image_PIL, size, Image.LANCZOS)
image_array = np.asarray(image)
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
data[0] = normalized_image_array
# Make a prediction
prediction = model.predict(data)
index = np.argmax(prediction)
class_name = class_names[index]
confidence_score = prediction[0][index]
c_name = class_name.strip()
tumor_prediction = f"Model {'detected' if c_name == 'Yes' else 'did not detect'} Tumor"
other_class = 'No' if c_name == 'Yes' else 'Yes'
# Prepare data for plotting
res = {"Labels": [c_name, other_class], "Confidence Score": [(confidence_score * 100), (1 - confidence_score) * 100], "Total": 100}
data_for_plot = pd.DataFrame.from_dict(res)
tumor_conf_plt = create_plot(data_for_plot)
return tumor_prediction, tumor_conf_plt
# Gradio Interface
with gr.Blocks(title="Brain Tumor Detection | Data Science Dojo", css="styles.css") as demo:
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
imgInput = gr.Image()
with gr.Column(scale=1):
tumor = gr.Textbox(label='Presence of Tumor')
plot = gr.Plot(label="Plot")
submit_button = gr.Button(value="Submit")
submit_button.click(fn=predict_tumor, inputs=[imgInput], outputs=[tumor, plot])
gr.Examples(
examples=["pred2.jpg", "pred3.jpg"],
inputs=imgInput,
outputs=[tumor, plot],
fn=predict_tumor,
cache_examples=True,
)
demo.launch()