Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import tensorflow as tf | |
| import matplotlib.pyplot as plt | |
| from PIL import Image | |
| import pickle | |
| from tensorflow.keras.models import load_model | |
| import os | |
| os.system('wget -O model.h5 "https://drive.google.com/u/0/uc?id=1UqXYR2e3c0VW8Ax4nYLvef7Vmlx3AEGi&export=download"') | |
| os.system('wget -O model2.pkl "https://drive.google.com/u/0/uc?id=1avoaq0fNGrLb4JatN0C-3rL8VnX2x4Ch&export=download"') | |
| # Load the RGB to hyperspectral conversion model | |
| #converion_model = load_model('/kaggle/input/convmo/Conversion_model.h5') | |
| converion_model = tf.keras.models.load_model("model.h5") | |
| # Load the cancer classification model | |
| #cancer_model = pickle.load(open("/kaggle/input/classi/ClassRF (1).pkl", "rb")) | |
| cancer_model = pickle.load(open("model2.pkl", "rb")) | |
| def classify(rgb_image): | |
| img = Image.fromarray(rgb_image.astype('uint8'), 'RGB') | |
| img = img.resize((272, 512)) | |
| arr = np.array(img).astype('float32') / 255.0 | |
| new_size = (272, 512) | |
| resized_rgb_img = tf.image.resize(arr, new_size) | |
| resized_rgb_img = tf.reshape(resized_rgb_img, (272, 512, 3)) | |
| resized_rgb_img = np.expand_dims(resized_rgb_img , axis=0) | |
| # Convert the RGB image to hyperspectral using your model | |
| hyperspectral_image = converion_model(resized_rgb_img) | |
| hyperspectral_image = tf.image.resize(hyperspectral_image, new_size) | |
| hyperspectral_image = tf.reshape(hyperspectral_image, (272, 512, 16)) | |
| imgplot = hyperspectral_image.numpy().astype(np.float32) | |
| imgplot= imgplot.reshape(-1, 272*512*16) | |
| prediction = cancer_model.predict(imgplot) | |
| if prediction == 0: | |
| x="High Risk of being a Cancerous Mole" | |
| else: | |
| x="Normal mole" | |
| return x | |
| # Define the Gradio interface | |
| #image_input = gr.inputs.Image() | |
| output_label = gr.components.Label() | |
| #output_label=["text"] | |
| image_input = gr.components.Image() | |
| gr.Interface( | |
| classify, | |
| image_input, | |
| output_label, | |
| title="RGB to Hyperspectral Conversion and Cancer Classification", | |
| description="Upload an RGB image and get a prediction of whether you have skin cancer or not." | |
| ).launch() | |