DHEIVER commited on
Commit
d05b9de
·
verified ·
1 Parent(s): a13d2f0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +86 -98
app.py CHANGED
@@ -4,101 +4,89 @@ import fast_colorthief
4
  import webcolors
5
  from PIL import Image
6
  import numpy as np
7
- thres = 0.45 # Threshold to detect object
8
-
9
-
10
-
11
- def Detection(filename):
12
- cap = cv2.VideoCapture(filename)
13
- framecount=0
14
-
15
- cap.set(3,1280)
16
- cap.set(4,720)
17
- cap.set(10,70)
18
-
19
- error="in function 'cv::imshow'"
20
- classNames= []
21
- FinalItems=[]
22
- classFile = 'coco.names'
23
- with open(classFile,'rt') as f:
24
- #classNames = f.read().rstrip('n').split('n')
25
- classNames = f.readlines()
26
-
27
-
28
- # remove new line characters
29
- classNames = [x.strip() for x in classNames]
30
- print(classNames)
31
- configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
32
- weightsPath = 'frozen_inference_graph.pb'
33
-
34
-
35
- net = cv2.dnn_DetectionModel(weightsPath,configPath)
36
- net.setInputSize(320,320)
37
- net.setInputScale(1.0/ 127.5)
38
- net.setInputMean((127.5, 127.5, 127.5))
39
- net.setInputSwapRB(True)
40
-
41
- while True:
42
- success,img = cap.read()
43
-
44
-
45
-
46
- # #Colour
47
- try:
48
- image = Image.fromarray(img)
49
- image = image.convert('RGBA')
50
- image = np.array(image).astype(np.uint8)
51
- palette=fast_colorthief.get_palette(image)
52
-
53
-
54
- for i in range(len(palette)):
55
- diff={}
56
- for color_hex, color_name in webcolors.CSS3_HEX_TO_NAMES.items():
57
- r, g, b = webcolors.hex_to_rgb(color_hex)
58
- diff[sum([(r - palette[i][0])**2,
59
- (g - palette[i][1])**2,
60
- (b - palette[i][2])**2])]= color_name
61
- if FinalItems.count(diff[min(diff.keys())])==0:
62
- FinalItems.append(diff[min(diff.keys())])
63
-
64
- except:
65
- pass
66
-
67
- try:
68
- classIds, confs, bbox = net.detect(img,confThreshold=thres)
69
- except:
70
- pass
71
- print(classIds,bbox)
72
- try:
73
- if len(classIds) != 0:
74
- for classId, confidence,box in zip(classIds.flatten(),confs.flatten(),bbox):
75
-
76
- #cv2.rectangle(img,box,color=(0,255,0),thickness=2)
77
- #cv2.putText(img,classNames[classId-1].upper(),(box[0]+10,box[1]+30),
78
- #cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),2)
79
- #cv2.putText(img,str(round(confidence*100,2)),(box[0]+200,box[1]+30),
80
- #cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),2)
81
- if FinalItems.count(classNames[classId-1]) == 0:
82
- FinalItems.append(classNames[classId-1])
83
-
84
-
85
- #cv2.imshow("Output",img)
86
- cv2.waitKey(10)
87
- if framecount>cap.get(cv2.CAP_PROP_FRAME_COUNT):
88
- break
89
- else:
90
- framecount+=1
91
- except Exception as err:
92
- print(err)
93
- t=str(err)
94
- if t.__contains__(error):
95
- break
96
-
97
- print(FinalItems)
98
- return str(FinalItems)
99
-
100
- interface = gr.Interface(fn=Detection,
101
- inputs=["video"],
102
- outputs="text",
103
- title='Object & Color Detection in Video')
104
- interface.launch(inline=False,debug=True)
 
4
  import webcolors
5
  from PIL import Image
6
  import numpy as np
7
+
8
+ thres = 0.45 # Threshold to detect object
9
+
10
+
11
+ def Detection(filename, confidence_threshold=0.45):
12
+ cap = cv2.VideoCapture(filename)
13
+ framecount = 0
14
+
15
+ cap.set(3, 1280)
16
+ cap.set(4, 720)
17
+ cap.set(10, 70)
18
+
19
+ error = "in function 'cv::imshow'"
20
+ classNames = []
21
+ FinalItems = []
22
+ classFile = 'coco.names'
23
+ with open(classFile, 'rt') as f:
24
+ classNames = f.readlines()
25
+
26
+ # remove new line characters
27
+ classNames = [x.strip() for x in classNames]
28
+
29
+ configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
30
+ weightsPath = 'frozen_inference_graph.pb'
31
+
32
+ net = cv2.dnn_DetectionModel(weightsPath, configPath)
33
+ net.setInputSize(320, 320)
34
+ net.setInputScale(1.0 / 127.5)
35
+ net.setInputMean((127.5, 127.5, 127.5))
36
+ net.setInputSwapRB(True)
37
+
38
+ while True:
39
+ success, img = cap.read()
40
+
41
+ # #Colour
42
+ try:
43
+ image = Image.fromarray(img)
44
+ image = image.convert('RGBA')
45
+ image = np.array(image).astype(np.uint8)
46
+ palette = fast_colorthief.get_palette(image)
47
+
48
+ for i in range(len(palette)):
49
+ diff = {}
50
+ for color_hex, color_name in webcolors.CSS3_HEX_TO_NAMES.items():
51
+ r, g, b = webcolors.hex_to_rgb(color_hex)
52
+ diff[sum([(r - palette[i][0]) ** 2,
53
+ (g - palette[i][1]) ** 2,
54
+ (b - palette[i][2]) ** 2])] = color_name
55
+ if FinalItems.count(diff[min(diff.keys())]) == 0:
56
+ FinalItems.append(diff[min(diff.keys())])
57
+
58
+ except:
59
+ pass
60
+
61
+ try:
62
+ classIds, confs, bbox = net.detect(
63
+ img, confThreshold=confidence_threshold)
64
+ except:
65
+ pass
66
+
67
+ try:
68
+ if len(classIds) != 0:
69
+ for classId, confidence, box in zip(classIds.flatten(), confs.flatten(), bbox):
70
+ if FinalItems.count(classNames[classId - 1]) == 0:
71
+ FinalItems.append(classNames[classId - 1])
72
+
73
+ if framecount > cap.get(cv2.CAP_PROP_FRAME_COUNT):
74
+ break
75
+ else:
76
+ framecount += 1
77
+ except Exception as err:
78
+ print(err)
79
+ t = str(err)
80
+ if t.__contains__(error):
81
+ break
82
+
83
+ print(FinalItems)
84
+ return str(FinalItems)
85
+
86
+
87
+ interface = gr.Interface(fn=Detection,
88
+ inputs=["video", gr.inputs.Slider(0.01, 1, step=0.01, label="Limiar de Confiança")],
89
+ outputs="text",
90
+ title='Detecção de Objetos e Cores em Vídeo',
91
+ description='Este aplicativo detecta objetos em um vídeo e identifica suas cores. Carregue um vídeo e ajuste o limiar de confiança para a detecção de objetos.')
92
+ interface.launch(inline=False, debug=True)