Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import tensorflow as tf | |
| import tensorflow_io as tfio | |
| import numpy as np | |
| loaded_model = tf.keras.models.load_model('kidney2.h5') | |
| label_names = { | |
| "1": "Cyst", | |
| "2": "Normal", | |
| "3": "Stone", | |
| "4": "Tumor" | |
| } | |
| def classify_kidney_image(img): | |
| resize = tf.image.resize(img, (224, 224)) | |
| gray = tfio.experimental.color.bgr_to_rgb(resize) | |
| normalized_img = gray / 255.0 | |
| yhat = loaded_model.predict(np.expand_dims(normalized_img, 0)) | |
| class_index = np.argmax(yhat, axis=1)[0] | |
| predicted_label = label_names[str(class_index + 1)] | |
| probabilities = {label_names[str(i + 1)]: str(prob) for i, prob in enumerate(yhat[0])} | |
| return predicted_label, probabilities | |
| image = gr.inputs.Image(shape=(224, 224)) | |
| label = gr.outputs.Label() | |
| app = gr.Interface(fn=classify_kidney_image, inputs=image, outputs=label, interpretation='default', title='Kidney Image Classifier') | |
| app.launch(debug=True) | |