Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,24 +17,17 @@ def classify_image(input_image):
|
|
17 |
|
18 |
# Assuming your model outputs probabilities for two classes, you can return the class with the highest probability
|
19 |
class_index = np.argmax(prediction)
|
20 |
-
class_labels = ["
|
21 |
predicted_class = class_labels[class_index]
|
22 |
|
23 |
return predicted_class
|
24 |
|
25 |
# Create a Gradio interface
|
26 |
-
input_interface = gr.
|
27 |
-
output_interface = gr.outputs.Text() # Gradio output component for text
|
28 |
-
|
29 |
-
# Create the Gradio app
|
30 |
-
app = gr.Interface(
|
31 |
fn=classify_image,
|
32 |
-
inputs=
|
33 |
-
outputs=
|
34 |
-
live=True,
|
35 |
-
title="Image Classifier",
|
36 |
-
description="Classify images using a trained model."
|
37 |
)
|
38 |
|
39 |
-
#
|
40 |
-
|
|
|
17 |
|
18 |
# Assuming your model outputs probabilities for two classes, you can return the class with the highest probability
|
19 |
class_index = np.argmax(prediction)
|
20 |
+
class_labels = ["Normal", "Cataract"] # Replace with your actual class labels
|
21 |
predicted_class = class_labels[class_index]
|
22 |
|
23 |
return predicted_class
|
24 |
|
25 |
# Create a Gradio interface
|
26 |
+
input_interface = gr.Interface(
|
|
|
|
|
|
|
|
|
27 |
fn=classify_image,
|
28 |
+
inputs="image", # Specify input type as "image"
|
29 |
+
outputs="text" # Specify output type as "text"
|
|
|
|
|
|
|
30 |
)
|
31 |
|
32 |
+
# Launch the Gradio app
|
33 |
+
input_interface.launch()
|