Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Load the model
|
6 |
+
model = tf.keras.models.load_model('stomach.h5')
|
7 |
+
|
8 |
+
# Define the class names
|
9 |
+
class_names = {
|
10 |
+
0: 'Esophagitis',
|
11 |
+
1: 'Dyed lifted polyps'
|
12 |
+
}
|
13 |
+
|
14 |
+
|
15 |
+
def classify_image(image):
|
16 |
+
# Preprocess the image
|
17 |
+
img_array = tf.image.resize(image, [256, 256])
|
18 |
+
img_array = tf.expand_dims(img_array, 0) / 255.0
|
19 |
+
|
20 |
+
# Make a prediction
|
21 |
+
prediction = model.predict(img_array)
|
22 |
+
predicted_class = tf.argmax(prediction[0], axis=-1)
|
23 |
+
confidence = np.max(prediction[0])
|
24 |
+
|
25 |
+
return class_names[predicted_class.numpy()], confidence
|
26 |
+
|
27 |
+
|
28 |
+
iface = gr.Interface(
|
29 |
+
fn=classify_image,
|
30 |
+
inputs="image",
|
31 |
+
outputs=["text", "number"],
|
32 |
+
examples=[
|
33 |
+
['examples/0.jpg'],
|
34 |
+
['examples/1.jpg'],
|
35 |
+
])
|
36 |
+
iface.launch()
|