|
|
|
import streamlit as st |
|
import requests |
|
|
|
st.title("SuperKart Sales Predictor") |
|
|
|
|
|
Product_Weight = st.number_input("Product Weight", min_value=0.0, value=12.66) |
|
Product_Sugar_Content = st.selectbox("Product Sugar Content", ["Low Sugar", "Regular", "No Sugar"]) |
|
Product_Allocated_Area = st.number_input("Product Allocated Area", min_value=0.0, value=20.0) |
|
Product_MRP = st.number_input("Product MRP", min_value=0.0, value=100.0) |
|
Store_Size = st.selectbox("Store Size", ["Small", "Medium", "High"]) |
|
Store_Location_City_Type = st.selectbox("Store Location City Type", ["Urban", "Semi-Urban", "Tier 3"]) |
|
Store_Type = st.selectbox("Store Type", ["Type 1", "Type 2", "Type 3", "Type 4"]) |
|
Product_Id_char = st.selectbox("Product ID Prefix", ["FD", "DR", "NC"]) |
|
Store_Age_Years = st.number_input("Store Age (Years)", min_value=0, value=10) |
|
Product_Type_Category = st.selectbox("Product Type Category", ["Food", "Drinks", "Non-Consumable"]) |
|
|
|
|
|
product_data = { |
|
"Product_Weight": Product_Weight, |
|
"Product_Sugar_Content": Product_Sugar_Content, |
|
"Product_Allocated_Area": Product_Allocated_Area, |
|
"Product_MRP": Product_MRP, |
|
"Store_Size": Store_Size, |
|
"Store_Location_City_Type": Store_Location_City_Type, |
|
"Store_Type": Store_Type, |
|
"Product_Id_char": Product_Id_char, |
|
"Store_Age_Years": Store_Age_Years, |
|
"Product_Type_Category": Product_Type_Category |
|
} |
|
|
|
|
|
if st.button("Predict", type='primary'): |
|
response = requests.post( |
|
"https://DD8943-superkart-regression-app.hf.space/v1/predict", |
|
json=product_data |
|
) |
|
if response.status_code == 200: |
|
result = response.json() |
|
predicted_sales = result["Sales"] |
|
st.write(f"Predicted Product Store Sales Total: ₹{predicted_sales:.2f}") |
|
else: |
|
st.error("Error in API request") |
|
|