Cynthiaaaaaaaa's picture
Update app.py
33c8ccf verified
import subprocess
# Install transformers package
subprocess.run(['pip', 'install', 'transformers'])
# Import transformers module
from transformers import pipeline
import streamlit as st
# Summarization
def summarization(text):
text_model = pipeline("text-generation", model="ainize/bart-base-cnn")
summary = text_model(text, max_length=100, temperature=1.0)[0]["generated_text"]
return summary
# Sentiment Classification
def sentiment_classification(summary):
sentiment_model = pipeline("text-classification", model="wxrrrrrrr/finetunde_sentiment_analysis")
result = sentiment_model(summary, max_length=100, truncation=True)[0]['label']
if result != 'negative':
result = 'positive'
return result
def main():
st.set_page_config(page_title="Your Text Analysis", page_icon="🦜")
st.header("Tell me your comments!")
text_input = st.text_input("Enter your text here:")
if text_input:
# Stage 1: Summarization
st.text('Processing text...')
summary = summarization(text_input)
# st.write(summary)
# Stage 2: Sentiment Classification
st.text('Analyzing sentiment...')
sentiment = sentiment_classification(summary)
st.write(sentiment)
# Display the classification result
st.write("Sentiment:", sentiment)
if __name__ == '__main__':
main()