Spaces:
Runtime error
Runtime error
import subprocess | |
# Install transformers package | |
subprocess.run(['pip', 'install', 'transformers']) | |
# Import transformers module | |
from transformers import pipeline | |
import streamlit as st | |
# Summarization | |
def summarization(text): | |
text_model = pipeline("text-generation", model="ainize/bart-base-cnn") | |
summary = text_model(text, max_length=100, temperature=1.0)[0]["generated_text"] | |
return summary | |
# Sentiment Classification | |
def sentiment_classification(summary): | |
sentiment_model = pipeline("text-classification", model="wxrrrrrrr/finetunde_sentiment_analysis") | |
result = sentiment_model(summary, max_length=100, truncation=True)[0]['label'] | |
if result != 'negative': | |
result = 'positive' | |
return result | |
def main(): | |
st.set_page_config(page_title="Your Text Analysis", page_icon="🦜") | |
st.header("Tell me your comments!") | |
text_input = st.text_input("Enter your text here:") | |
if text_input: | |
# Stage 1: Summarization | |
st.text('Processing text...') | |
summary = summarization(text_input) | |
# st.write(summary) | |
# Stage 2: Sentiment Classification | |
st.text('Analyzing sentiment...') | |
sentiment = sentiment_classification(summary) | |
st.write(sentiment) | |
# Display the classification result | |
st.write("Sentiment:", sentiment) | |
if __name__ == '__main__': | |
main() |