Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files
gaussian_renderer/.__init__.py.swp
ADDED
Binary file (16.4 kB). View file
|
|
gaussian_renderer/.ipynb_checkpoints/__init__-checkpoint.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright (C) 2023, Inria
|
3 |
+
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This software is free for non-commercial, research and evaluation use
|
7 |
+
# under the terms of the LICENSE.md file.
|
8 |
+
#
|
9 |
+
# For inquiries contact george.drettakis@inria.fr
|
10 |
+
#
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import math
|
14 |
+
from depth_diff_gaussian_rasterization_min import GaussianRasterizationSettings, GaussianRasterizer
|
15 |
+
from scene.gaussian_model import GaussianModel
|
16 |
+
from utils.sh import eval_sh
|
17 |
+
|
18 |
+
def render(viewpoint_camera, pc: GaussianModel, opt, bg_color: torch.Tensor, scaling_modifier=1.0, override_color=None, render_only=False):
|
19 |
+
"""
|
20 |
+
Render the scene.
|
21 |
+
|
22 |
+
Background tensor (bg_color) must be on GPU!
|
23 |
+
"""
|
24 |
+
|
25 |
+
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
|
26 |
+
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0
|
27 |
+
try:
|
28 |
+
screenspace_points.retain_grad()
|
29 |
+
except:
|
30 |
+
pass
|
31 |
+
|
32 |
+
# Set up rasterization configuration
|
33 |
+
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
34 |
+
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
35 |
+
|
36 |
+
raster_settings = GaussianRasterizationSettings(
|
37 |
+
image_height=int(viewpoint_camera.image_height),
|
38 |
+
image_width=int(viewpoint_camera.image_width),
|
39 |
+
tanfovx=tanfovx,
|
40 |
+
tanfovy=tanfovy,
|
41 |
+
bg=bg_color,
|
42 |
+
scale_modifier=scaling_modifier,
|
43 |
+
viewmatrix=viewpoint_camera.world_view_transform,
|
44 |
+
projmatrix=viewpoint_camera.full_proj_transform,
|
45 |
+
sh_degree=pc.active_sh_degree,
|
46 |
+
campos=viewpoint_camera.camera_center,
|
47 |
+
prefiltered=False,
|
48 |
+
debug=opt.debug
|
49 |
+
)
|
50 |
+
|
51 |
+
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
52 |
+
|
53 |
+
means3D = pc.get_xyz
|
54 |
+
means2D = screenspace_points
|
55 |
+
opacity = pc.get_opacity
|
56 |
+
|
57 |
+
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
|
58 |
+
# scaling / rotation by the rasterizer.
|
59 |
+
scales = None
|
60 |
+
rotations = None
|
61 |
+
cov3D_precomp = None
|
62 |
+
if opt.compute_cov3D_python:
|
63 |
+
cov3D_precomp = pc.get_covariance(scaling_modifier)
|
64 |
+
else:
|
65 |
+
scales = pc.get_scaling
|
66 |
+
rotations = pc.get_rotation
|
67 |
+
|
68 |
+
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
|
69 |
+
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
|
70 |
+
shs = None
|
71 |
+
colors_precomp = None
|
72 |
+
if override_color is None:
|
73 |
+
if opt.convert_SHs_python:
|
74 |
+
shs_view = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2)
|
75 |
+
dir_pp = (pc.get_xyz - viewpoint_camera.camera_center.repeat(pc.get_features.shape[0], 1))
|
76 |
+
dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True)
|
77 |
+
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized)
|
78 |
+
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
|
79 |
+
else:
|
80 |
+
shs = pc.get_features
|
81 |
+
else:
|
82 |
+
colors_precomp = override_color
|
83 |
+
|
84 |
+
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
85 |
+
rendered_image, radii, depth = rasterizer(
|
86 |
+
means3D = means3D,
|
87 |
+
means2D = means2D,
|
88 |
+
shs = shs,
|
89 |
+
colors_precomp = colors_precomp,
|
90 |
+
opacities = opacity,
|
91 |
+
scales = scales,
|
92 |
+
rotations = rotations,
|
93 |
+
cov3D_precomp = cov3D_precomp)
|
94 |
+
|
95 |
+
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
|
96 |
+
# They will be excluded from value updates used in the splitting criteria.
|
97 |
+
if render_only:
|
98 |
+
return {"render": rendered_image, "depth": depth}
|
99 |
+
else:
|
100 |
+
return {"render": rendered_image,
|
101 |
+
"viewspace_points": screenspace_points,
|
102 |
+
"visibility_filter" : radii > 0,
|
103 |
+
"radii": radii,
|
104 |
+
"depth": depth}
|
gaussian_renderer/__init__.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright (C) 2023, Inria
|
3 |
+
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This software is free for non-commercial, research and evaluation use
|
7 |
+
# under the terms of the LICENSE.md file.
|
8 |
+
#
|
9 |
+
# For inquiries contact george.drettakis@inria.fr
|
10 |
+
#
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import math
|
14 |
+
from depth_diff_gaussian_rasterization_min import GaussianRasterizationSettings, GaussianRasterizer
|
15 |
+
from scene.gaussian_model import GaussianModel
|
16 |
+
from utils.sh import eval_sh
|
17 |
+
|
18 |
+
def render(viewpoint_camera, pc: GaussianModel, opt, bg_color: torch.Tensor, scaling_modifier=1.0, override_color=None, render_only=False):
|
19 |
+
"""
|
20 |
+
Render the scene.
|
21 |
+
|
22 |
+
Background tensor (bg_color) must be on GPU!
|
23 |
+
"""
|
24 |
+
|
25 |
+
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
|
26 |
+
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0
|
27 |
+
try:
|
28 |
+
screenspace_points.retain_grad()
|
29 |
+
except:
|
30 |
+
pass
|
31 |
+
|
32 |
+
# Set up rasterization configuration
|
33 |
+
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
34 |
+
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
35 |
+
|
36 |
+
raster_settings = GaussianRasterizationSettings(
|
37 |
+
image_height=int(viewpoint_camera.image_height),
|
38 |
+
image_width=int(viewpoint_camera.image_width),
|
39 |
+
tanfovx=tanfovx,
|
40 |
+
tanfovy=tanfovy,
|
41 |
+
bg=bg_color,
|
42 |
+
scale_modifier=scaling_modifier,
|
43 |
+
viewmatrix=viewpoint_camera.world_view_transform,
|
44 |
+
projmatrix=viewpoint_camera.full_proj_transform,
|
45 |
+
sh_degree=pc.active_sh_degree,
|
46 |
+
campos=viewpoint_camera.camera_center,
|
47 |
+
prefiltered=False,
|
48 |
+
debug=opt.debug
|
49 |
+
)
|
50 |
+
|
51 |
+
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
52 |
+
|
53 |
+
means3D = pc.get_xyz
|
54 |
+
means2D = screenspace_points
|
55 |
+
opacity = pc.get_opacity
|
56 |
+
|
57 |
+
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
|
58 |
+
# scaling / rotation by the rasterizer.
|
59 |
+
scales = None
|
60 |
+
rotations = None
|
61 |
+
cov3D_precomp = None
|
62 |
+
if opt.compute_cov3D_python:
|
63 |
+
cov3D_precomp = pc.get_covariance(scaling_modifier)
|
64 |
+
else:
|
65 |
+
scales = pc.get_scaling
|
66 |
+
rotations = pc.get_rotation
|
67 |
+
|
68 |
+
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
|
69 |
+
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
|
70 |
+
shs = None
|
71 |
+
colors_precomp = None
|
72 |
+
if override_color is None:
|
73 |
+
if opt.convert_SHs_python:
|
74 |
+
shs_view = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2)
|
75 |
+
dir_pp = (pc.get_xyz - viewpoint_camera.camera_center.repeat(pc.get_features.shape[0], 1))
|
76 |
+
dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True)
|
77 |
+
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized)
|
78 |
+
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
|
79 |
+
else:
|
80 |
+
shs = pc.get_features
|
81 |
+
else:
|
82 |
+
colors_precomp = override_color
|
83 |
+
|
84 |
+
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
85 |
+
rendered_image, radii, depth = rasterizer(
|
86 |
+
means3D = means3D,
|
87 |
+
means2D = means2D,
|
88 |
+
shs = shs,
|
89 |
+
colors_precomp = colors_precomp,
|
90 |
+
opacities = opacity,
|
91 |
+
scales = scales,
|
92 |
+
rotations = rotations,
|
93 |
+
cov3D_precomp = cov3D_precomp)
|
94 |
+
|
95 |
+
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
|
96 |
+
# They will be excluded from value updates used in the splitting criteria.
|
97 |
+
if render_only:
|
98 |
+
return {"render": rendered_image, "depth": depth}
|
99 |
+
else:
|
100 |
+
return {"render": rendered_image,
|
101 |
+
"viewspace_points": screenspace_points,
|
102 |
+
"visibility_filter" : radii > 0,
|
103 |
+
"radii": radii,
|
104 |
+
"depth": depth}
|
gaussian_renderer/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (2.2 kB). View file
|
|
gaussian_renderer/network_gui.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright (C) 2023, Inria
|
3 |
+
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This software is free for non-commercial, research and evaluation use
|
7 |
+
# under the terms of the LICENSE.md file.
|
8 |
+
#
|
9 |
+
# For inquiries contact george.drettakis@inria.fr
|
10 |
+
#
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import traceback
|
14 |
+
import socket
|
15 |
+
import json
|
16 |
+
from scene.cameras import MiniCam
|
17 |
+
|
18 |
+
host = "127.0.0.1"
|
19 |
+
port = 6009
|
20 |
+
|
21 |
+
conn = None
|
22 |
+
addr = None
|
23 |
+
|
24 |
+
listener = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
25 |
+
|
26 |
+
def init(wish_host, wish_port):
|
27 |
+
global host, port, listener
|
28 |
+
host = wish_host
|
29 |
+
port = wish_port
|
30 |
+
listener.bind((host, port))
|
31 |
+
listener.listen()
|
32 |
+
listener.settimeout(0)
|
33 |
+
|
34 |
+
def try_connect():
|
35 |
+
global conn, addr, listener
|
36 |
+
try:
|
37 |
+
conn, addr = listener.accept()
|
38 |
+
print(f"\nConnected by {addr}")
|
39 |
+
conn.settimeout(None)
|
40 |
+
except Exception as inst:
|
41 |
+
pass
|
42 |
+
|
43 |
+
def read():
|
44 |
+
global conn
|
45 |
+
messageLength = conn.recv(4)
|
46 |
+
messageLength = int.from_bytes(messageLength, 'little')
|
47 |
+
message = conn.recv(messageLength)
|
48 |
+
return json.loads(message.decode("utf-8"))
|
49 |
+
|
50 |
+
def send(message_bytes, verify):
|
51 |
+
global conn
|
52 |
+
if message_bytes != None:
|
53 |
+
conn.sendall(message_bytes)
|
54 |
+
conn.sendall(len(verify).to_bytes(4, 'little'))
|
55 |
+
conn.sendall(bytes(verify, 'ascii'))
|
56 |
+
|
57 |
+
def receive():
|
58 |
+
message = read()
|
59 |
+
|
60 |
+
width = message["resolution_x"]
|
61 |
+
height = message["resolution_y"]
|
62 |
+
|
63 |
+
if width != 0 and height != 0:
|
64 |
+
try:
|
65 |
+
do_training = bool(message["train"])
|
66 |
+
fovy = message["fov_y"]
|
67 |
+
fovx = message["fov_x"]
|
68 |
+
znear = message["z_near"]
|
69 |
+
zfar = message["z_far"]
|
70 |
+
do_shs_python = bool(message["shs_python"])
|
71 |
+
do_rot_scale_python = bool(message["rot_scale_python"])
|
72 |
+
keep_alive = bool(message["keep_alive"])
|
73 |
+
scaling_modifier = message["scaling_modifier"]
|
74 |
+
world_view_transform = torch.reshape(torch.tensor(message["view_matrix"]), (4, 4)).cuda()
|
75 |
+
world_view_transform[:,1] = -world_view_transform[:,1]
|
76 |
+
world_view_transform[:,2] = -world_view_transform[:,2]
|
77 |
+
full_proj_transform = torch.reshape(torch.tensor(message["view_projection_matrix"]), (4, 4)).cuda()
|
78 |
+
full_proj_transform[:,1] = -full_proj_transform[:,1]
|
79 |
+
custom_cam = MiniCam(width, height, fovy, fovx, znear, zfar, world_view_transform, full_proj_transform)
|
80 |
+
except Exception as e:
|
81 |
+
print("")
|
82 |
+
traceback.print_exc()
|
83 |
+
raise e
|
84 |
+
return custom_cam, do_training, do_shs_python, do_rot_scale_python, keep_alive, scaling_modifier
|
85 |
+
else:
|
86 |
+
return None, None, None, None, None, None
|