ironjr's picture
untroubled files first
24f9881
raw
history blame
11 kB
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.cuda.amp as amp
import numpy as np
KEY_OUTPUT = 'metric_depth'
def extract_key(prediction, key):
if isinstance(prediction, dict):
return prediction[key]
return prediction
# Main loss function used for ZoeDepth. Copy/paste from AdaBins repo (https://github.com/shariqfarooq123/AdaBins/blob/0952d91e9e762be310bb4cd055cbfe2448c0ce20/loss.py#L7)
class SILogLoss(nn.Module):
"""SILog loss (pixel-wise)"""
def __init__(self, beta=0.15):
super(SILogLoss, self).__init__()
self.name = 'SILog'
self.beta = beta
def forward(self, input, target, mask=None, interpolate=True, return_interpolated=False):
input = extract_key(input, KEY_OUTPUT)
if input.shape[-1] != target.shape[-1] and interpolate:
input = nn.functional.interpolate(
input, target.shape[-2:], mode='bilinear', align_corners=True)
intr_input = input
else:
intr_input = input
if target.ndim == 3:
target = target.unsqueeze(1)
if mask is not None:
if mask.ndim == 3:
mask = mask.unsqueeze(1)
input = input[mask]
target = target[mask]
with amp.autocast(enabled=False): # amp causes NaNs in this loss function
alpha = 1e-7
g = torch.log(input + alpha) - torch.log(target + alpha)
# n, c, h, w = g.shape
# norm = 1/(h*w)
# Dg = norm * torch.sum(g**2) - (0.85/(norm**2)) * (torch.sum(g))**2
Dg = torch.var(g) + self.beta * torch.pow(torch.mean(g), 2)
loss = 10 * torch.sqrt(Dg)
if torch.isnan(loss):
print("Nan SILog loss")
print("input:", input.shape)
print("target:", target.shape)
print("G", torch.sum(torch.isnan(g)))
print("Input min max", torch.min(input), torch.max(input))
print("Target min max", torch.min(target), torch.max(target))
print("Dg", torch.isnan(Dg))
print("loss", torch.isnan(loss))
if not return_interpolated:
return loss
return loss, intr_input
def grad(x):
# x.shape : n, c, h, w
diff_x = x[..., 1:, 1:] - x[..., 1:, :-1]
diff_y = x[..., 1:, 1:] - x[..., :-1, 1:]
mag = diff_x**2 + diff_y**2
# angle_ratio
angle = torch.atan(diff_y / (diff_x + 1e-10))
return mag, angle
def grad_mask(mask):
return mask[..., 1:, 1:] & mask[..., 1:, :-1] & mask[..., :-1, 1:]
class GradL1Loss(nn.Module):
"""Gradient loss"""
def __init__(self):
super(GradL1Loss, self).__init__()
self.name = 'GradL1'
def forward(self, input, target, mask=None, interpolate=True, return_interpolated=False):
input = extract_key(input, KEY_OUTPUT)
if input.shape[-1] != target.shape[-1] and interpolate:
input = nn.functional.interpolate(
input, target.shape[-2:], mode='bilinear', align_corners=True)
intr_input = input
else:
intr_input = input
grad_gt = grad(target)
grad_pred = grad(input)
mask_g = grad_mask(mask)
loss = nn.functional.l1_loss(grad_pred[0][mask_g], grad_gt[0][mask_g])
loss = loss + \
nn.functional.l1_loss(grad_pred[1][mask_g], grad_gt[1][mask_g])
if not return_interpolated:
return loss
return loss, intr_input
class OrdinalRegressionLoss(object):
def __init__(self, ord_num, beta, discretization="SID"):
self.ord_num = ord_num
self.beta = beta
self.discretization = discretization
def _create_ord_label(self, gt):
N,one, H, W = gt.shape
# print("gt shape:", gt.shape)
ord_c0 = torch.ones(N, self.ord_num, H, W).to(gt.device)
if self.discretization == "SID":
label = self.ord_num * torch.log(gt) / np.log(self.beta)
else:
label = self.ord_num * (gt - 1.0) / (self.beta - 1.0)
label = label.long()
mask = torch.linspace(0, self.ord_num - 1, self.ord_num, requires_grad=False) \
.view(1, self.ord_num, 1, 1).to(gt.device)
mask = mask.repeat(N, 1, H, W).contiguous().long()
mask = (mask > label)
ord_c0[mask] = 0
ord_c1 = 1 - ord_c0
# implementation according to the paper.
# ord_label = torch.ones(N, self.ord_num * 2, H, W).to(gt.device)
# ord_label[:, 0::2, :, :] = ord_c0
# ord_label[:, 1::2, :, :] = ord_c1
# reimplementation for fast speed.
ord_label = torch.cat((ord_c0, ord_c1), dim=1)
return ord_label, mask
def __call__(self, prob, gt):
"""
:param prob: ordinal regression probability, N x 2*Ord Num x H x W, torch.Tensor
:param gt: depth ground truth, NXHxW, torch.Tensor
:return: loss: loss value, torch.float
"""
# N, C, H, W = prob.shape
valid_mask = gt > 0.
ord_label, mask = self._create_ord_label(gt)
# print("prob shape: {}, ord label shape: {}".format(prob.shape, ord_label.shape))
entropy = -prob * ord_label
loss = torch.sum(entropy, dim=1)[valid_mask.squeeze(1)]
return loss.mean()
class DiscreteNLLLoss(nn.Module):
"""Cross entropy loss"""
def __init__(self, min_depth=1e-3, max_depth=10, depth_bins=64):
super(DiscreteNLLLoss, self).__init__()
self.name = 'CrossEntropy'
self.ignore_index = -(depth_bins + 1)
# self._loss_func = nn.NLLLoss(ignore_index=self.ignore_index)
self._loss_func = nn.CrossEntropyLoss(ignore_index=self.ignore_index)
self.min_depth = min_depth
self.max_depth = max_depth
self.depth_bins = depth_bins
self.alpha = 1
self.zeta = 1 - min_depth
self.beta = max_depth + self.zeta
def quantize_depth(self, depth):
# depth : N1HW
# output : NCHW
# Quantize depth log-uniformly on [1, self.beta] into self.depth_bins bins
depth = torch.log(depth / self.alpha) / np.log(self.beta / self.alpha)
depth = depth * (self.depth_bins - 1)
depth = torch.round(depth)
depth = depth.long()
return depth
def _dequantize_depth(self, depth):
"""
Inverse of quantization
depth : NCHW -> N1HW
"""
# Get the center of the bin
def forward(self, input, target, mask=None, interpolate=True, return_interpolated=False):
input = extract_key(input, KEY_OUTPUT)
# assert torch.all(input <= 0), "Input should be negative"
if input.shape[-1] != target.shape[-1] and interpolate:
input = nn.functional.interpolate(
input, target.shape[-2:], mode='bilinear', align_corners=True)
intr_input = input
else:
intr_input = input
# assert torch.all(input)<=1)
if target.ndim == 3:
target = target.unsqueeze(1)
target = self.quantize_depth(target)
if mask is not None:
if mask.ndim == 3:
mask = mask.unsqueeze(1)
# Set the mask to ignore_index
mask = mask.long()
input = input * mask + (1 - mask) * self.ignore_index
target = target * mask + (1 - mask) * self.ignore_index
input = input.flatten(2) # N, nbins, H*W
target = target.flatten(1) # N, H*W
loss = self._loss_func(input, target)
if not return_interpolated:
return loss
return loss, intr_input
def compute_scale_and_shift(prediction, target, mask):
# system matrix: A = [[a_00, a_01], [a_10, a_11]]
a_00 = torch.sum(mask * prediction * prediction, (1, 2))
a_01 = torch.sum(mask * prediction, (1, 2))
a_11 = torch.sum(mask, (1, 2))
# right hand side: b = [b_0, b_1]
b_0 = torch.sum(mask * prediction * target, (1, 2))
b_1 = torch.sum(mask * target, (1, 2))
# solution: x = A^-1 . b = [[a_11, -a_01], [-a_10, a_00]] / (a_00 * a_11 - a_01 * a_10) . b
x_0 = torch.zeros_like(b_0)
x_1 = torch.zeros_like(b_1)
det = a_00 * a_11 - a_01 * a_01
# A needs to be a positive definite matrix.
valid = det > 0
x_0[valid] = (a_11[valid] * b_0[valid] - a_01[valid] * b_1[valid]) / det[valid]
x_1[valid] = (-a_01[valid] * b_0[valid] + a_00[valid] * b_1[valid]) / det[valid]
return x_0, x_1
class ScaleAndShiftInvariantLoss(nn.Module):
def __init__(self):
super().__init__()
self.name = "SSILoss"
def forward(self, prediction, target, mask, interpolate=True, return_interpolated=False):
if prediction.shape[-1] != target.shape[-1] and interpolate:
prediction = nn.functional.interpolate(prediction, target.shape[-2:], mode='bilinear', align_corners=True)
intr_input = prediction
else:
intr_input = prediction
prediction, target, mask = prediction.squeeze(), target.squeeze(), mask.squeeze()
assert prediction.shape == target.shape, f"Shape mismatch: Expected same shape but got {prediction.shape} and {target.shape}."
scale, shift = compute_scale_and_shift(prediction, target, mask)
scaled_prediction = scale.view(-1, 1, 1) * prediction + shift.view(-1, 1, 1)
loss = nn.functional.l1_loss(scaled_prediction[mask], target[mask])
if not return_interpolated:
return loss
return loss, intr_input
if __name__ == '__main__':
# Tests for DiscreteNLLLoss
celoss = DiscreteNLLLoss()
print(celoss(torch.rand(4, 64, 26, 32)*10, torch.rand(4, 1, 26, 32)*10, ))
d = torch.Tensor([6.59, 3.8, 10.0])
print(celoss.dequantize_depth(celoss.quantize_depth(d)))