Spaces:
Runtime error
Runtime error
# MIT License | |
# Copyright (c) 2022 Intelligent Systems Lab Org | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# File author: Shariq Farooq Bhat | |
import os | |
import cv2 | |
import numpy as np | |
import torch | |
from PIL import Image | |
from torch.utils.data import DataLoader, Dataset | |
from torchvision import transforms | |
class ToTensor(object): | |
def __init__(self): | |
# self.normalize = transforms.Normalize( | |
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
self.normalize = lambda x: x | |
# self.resize = transforms.Resize((375, 1242)) | |
def __call__(self, sample): | |
image, depth = sample['image'], sample['depth'] | |
image = self.to_tensor(image) | |
image = self.normalize(image) | |
depth = self.to_tensor(depth) | |
# image = self.resize(image) | |
return {'image': image, 'depth': depth, 'dataset': "vkitti"} | |
def to_tensor(self, pic): | |
if isinstance(pic, np.ndarray): | |
img = torch.from_numpy(pic.transpose((2, 0, 1))) | |
return img | |
# # handle PIL Image | |
if pic.mode == 'I': | |
img = torch.from_numpy(np.array(pic, np.int32, copy=False)) | |
elif pic.mode == 'I;16': | |
img = torch.from_numpy(np.array(pic, np.int16, copy=False)) | |
else: | |
img = torch.ByteTensor( | |
torch.ByteStorage.from_buffer(pic.tobytes())) | |
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK | |
if pic.mode == 'YCbCr': | |
nchannel = 3 | |
elif pic.mode == 'I;16': | |
nchannel = 1 | |
else: | |
nchannel = len(pic.mode) | |
img = img.view(pic.size[1], pic.size[0], nchannel) | |
img = img.transpose(0, 1).transpose(0, 2).contiguous() | |
if isinstance(img, torch.ByteTensor): | |
return img.float() | |
else: | |
return img | |
class VKITTI2(Dataset): | |
def __init__(self, data_dir_root, do_kb_crop=True, split="test"): | |
import glob | |
# image paths are of the form <data_dir_root>/rgb/<scene>/<variant>/frames/<rgb,depth>/Camera<0,1>/rgb_{}.jpg | |
self.image_files = glob.glob(os.path.join( | |
data_dir_root, "rgb", "**", "frames", "rgb", "Camera_0", '*.jpg'), recursive=True) | |
self.depth_files = [r.replace("/rgb/", "/depth/").replace( | |
"rgb_", "depth_").replace(".jpg", ".png") for r in self.image_files] | |
self.do_kb_crop = True | |
self.transform = ToTensor() | |
# If train test split is not created, then create one. | |
# Split is such that 8% of the frames from each scene are used for testing. | |
if not os.path.exists(os.path.join(data_dir_root, "train.txt")): | |
import random | |
scenes = set([os.path.basename(os.path.dirname( | |
os.path.dirname(os.path.dirname(f)))) for f in self.image_files]) | |
train_files = [] | |
test_files = [] | |
for scene in scenes: | |
scene_files = [f for f in self.image_files if os.path.basename( | |
os.path.dirname(os.path.dirname(os.path.dirname(f)))) == scene] | |
random.shuffle(scene_files) | |
train_files.extend(scene_files[:int(len(scene_files) * 0.92)]) | |
test_files.extend(scene_files[int(len(scene_files) * 0.92):]) | |
with open(os.path.join(data_dir_root, "train.txt"), "w") as f: | |
f.write("\n".join(train_files)) | |
with open(os.path.join(data_dir_root, "test.txt"), "w") as f: | |
f.write("\n".join(test_files)) | |
if split == "train": | |
with open(os.path.join(data_dir_root, "train.txt"), "r") as f: | |
self.image_files = f.read().splitlines() | |
self.depth_files = [r.replace("/rgb/", "/depth/").replace( | |
"rgb_", "depth_").replace(".jpg", ".png") for r in self.image_files] | |
elif split == "test": | |
with open(os.path.join(data_dir_root, "test.txt"), "r") as f: | |
self.image_files = f.read().splitlines() | |
self.depth_files = [r.replace("/rgb/", "/depth/").replace( | |
"rgb_", "depth_").replace(".jpg", ".png") for r in self.image_files] | |
def __getitem__(self, idx): | |
image_path = self.image_files[idx] | |
depth_path = self.depth_files[idx] | |
image = Image.open(image_path) | |
# depth = Image.open(depth_path) | |
depth = cv2.imread(depth_path, cv2.IMREAD_ANYCOLOR | | |
cv2.IMREAD_ANYDEPTH) / 100.0 # cm to m | |
depth = Image.fromarray(depth) | |
# print("dpeth min max", depth.min(), depth.max()) | |
# print(np.shape(image)) | |
# print(np.shape(depth)) | |
if self.do_kb_crop: | |
if idx == 0: | |
print("Using KB input crop") | |
height = image.height | |
width = image.width | |
top_margin = int(height - 352) | |
left_margin = int((width - 1216) / 2) | |
depth = depth.crop( | |
(left_margin, top_margin, left_margin + 1216, top_margin + 352)) | |
image = image.crop( | |
(left_margin, top_margin, left_margin + 1216, top_margin + 352)) | |
# uv = uv[:, top_margin:top_margin + 352, left_margin:left_margin + 1216] | |
image = np.asarray(image, dtype=np.float32) / 255.0 | |
# depth = np.asarray(depth, dtype=np.uint16) /1. | |
depth = np.asarray(depth, dtype=np.float32) / 1. | |
depth[depth > 80] = -1 | |
depth = depth[..., None] | |
sample = dict(image=image, depth=depth) | |
# return sample | |
sample = self.transform(sample) | |
if idx == 0: | |
print(sample["image"].shape) | |
return sample | |
def __len__(self): | |
return len(self.image_files) | |
def get_vkitti2_loader(data_dir_root, batch_size=1, **kwargs): | |
dataset = VKITTI2(data_dir_root) | |
return DataLoader(dataset, batch_size, **kwargs) | |
if __name__ == "__main__": | |
loader = get_vkitti2_loader( | |
data_dir_root="/home/bhatsf/shortcuts/datasets/vkitti2") | |
print("Total files", len(loader.dataset)) | |
for i, sample in enumerate(loader): | |
print(sample["image"].shape) | |
print(sample["depth"].shape) | |
print(sample["dataset"]) | |
print(sample['depth'].min(), sample['depth'].max()) | |
if i > 5: | |
break | |