Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -126,26 +126,29 @@ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-b
|
|
126 |
supabase: Client = create_client(
|
127 |
os.environ.get("SUPABASE_URL"),
|
128 |
os.environ.get("SUPABASE_SERVICE_KEY"))
|
129 |
-
# Initialize vector store
|
130 |
vector_store = SupabaseVectorStore(
|
131 |
client=supabase,
|
132 |
embedding=embeddings,
|
133 |
table_name="documents",
|
134 |
-
query_name="match_documents"
|
135 |
-
columns={
|
136 |
-
"content": "result_content",
|
137 |
-
"metadata": "result_metadata"
|
138 |
-
}
|
139 |
)
|
140 |
|
141 |
-
# Create retriever with
|
142 |
retriever = vector_store.as_retriever(
|
143 |
search_kwargs={
|
144 |
"k": 3,
|
145 |
-
"filter": {}
|
146 |
}
|
147 |
)
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
tools = [
|
150 |
multiply,
|
151 |
add,
|
|
|
126 |
supabase: Client = create_client(
|
127 |
os.environ.get("SUPABASE_URL"),
|
128 |
os.environ.get("SUPABASE_SERVICE_KEY"))
|
129 |
+
# Initialize vector store without 'columns' parameter
|
130 |
vector_store = SupabaseVectorStore(
|
131 |
client=supabase,
|
132 |
embedding=embeddings,
|
133 |
table_name="documents",
|
134 |
+
query_name="match_documents"
|
|
|
|
|
|
|
|
|
135 |
)
|
136 |
|
137 |
+
# Create retriever with proper search configuration
|
138 |
retriever = vector_store.as_retriever(
|
139 |
search_kwargs={
|
140 |
"k": 3,
|
141 |
+
"filter": {}
|
142 |
}
|
143 |
)
|
144 |
|
145 |
+
# Create tool with the configured retriever
|
146 |
+
retriever_tool = create_retriever_tool(
|
147 |
+
retriever=retriever,
|
148 |
+
name="document_retriever",
|
149 |
+
description="Searches for similar documents in knowledge base",
|
150 |
+
)
|
151 |
+
|
152 |
tools = [
|
153 |
multiply,
|
154 |
add,
|