Spaces:
Starting
Starting
from llama_index.core.agent.workflow import FunctionAgent | |
from llama_index.core.tools import FunctionTool | |
from llama_index.core import VectorStoreIndex, Document | |
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser | |
from llama_index.core.postprocessor import SentenceTransformerRerank | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from llama_index.core.retrievers import VectorIndexRetriever | |
from llama_index.core.query_engine import RetrieverQueryEngine | |
from llama_index.readers.file import PDFReader, DocxReader, CSVReader, ImageReader | |
import os | |
from typing import List, Dict, Any | |
from llama_index.tools.arxiv import ArxivToolSpec | |
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec | |
import duckduckgo_search as ddg | |
import re | |
from llama_index.core.agent.workflow import ReActAgent | |
import wandb | |
from llama_index.callbacks.wandb import WandbCallbackHandler | |
from llama_index.core.callbacks.base import CallbackManager | |
from llama_index.core.callbacks.llama_debug import LlamaDebugHandler | |
from llama_index.core import Settings | |
from llama_index.core.agent.workflow import CodeActAgent | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from llama_index.llms.huggingface import HuggingFaceLLM | |
model_id = "Qwen/Qwen2.5-7B-Instruct" | |
proj_llm = HuggingFaceLLM( | |
model_name=model_id, | |
tokenizer_name=model_id, | |
device_map="auto", # will use GPU if available | |
model_kwargs={"torch_dtype": "auto"}, | |
generate_kwargs={"temperature": 0.7, "top_p": 0.95} | |
) | |
embed_model = HuggingFaceEmbedding("BAAI/bge-small-en-v1.5") | |
wandb.init(project="gaia-llamaindex-agents") # Choisis ton nom de projet | |
wandb_callback = WandbCallbackHandler(run_args={"project": "gaia-llamaindex-agents"}) | |
llama_debug = LlamaDebugHandler(print_trace_on_end=True) | |
callback_manager = CallbackManager([wandb_callback, llama_debug]) | |
Settings.llm = proj_llm | |
Settings.embed_model = embed_model | |
Settings.callback_manager = callback_manager | |
class EnhancedRAGQueryEngine: | |
def __init__(self, task_context: str = ""): | |
self.task_context = task_context | |
self.embed_model = embed_model | |
self.reranker = SentenceTransformerRerank(model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=5) | |
self.readers = { | |
'.pdf': PDFReader(), | |
'.docx': DocxReader(), | |
'.doc': DocxReader(), | |
'.csv': CSVReader(), | |
'.txt': lambda file_path: [Document(text=open(file_path, 'r').read())], | |
'.jpg': ImageReader(), | |
'.jpeg': ImageReader(), | |
'.png': ImageReader() | |
} | |
self.sentence_window_parser = SentenceWindowNodeParser.from_defaults( | |
window_size=3, | |
window_metadata_key="window", | |
original_text_metadata_key="original_text" | |
) | |
self.hierarchical_parser = HierarchicalNodeParser.from_defaults( | |
chunk_sizes=[2048, 512, 128] | |
) | |
def load_and_process_documents(self, file_paths: List[str]) -> List[Document]: | |
documents = [] | |
for file_path in file_paths: | |
file_ext = os.path.splitext(file_path)[1].lower() | |
try: | |
if file_ext in self.readers: | |
reader = self.readers[file_ext] | |
if callable(reader): | |
docs = reader(file_path) | |
else: | |
docs = reader.load_data(file=file_path) | |
# Add metadata to all documents | |
for doc in docs: | |
doc.metadata.update({ | |
"file_path": file_path, | |
"file_type": file_ext[1:], | |
"task_context": self.task_context | |
}) | |
documents.extend(docs) | |
except Exception as e: | |
# Fallback to text reading | |
try: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
documents.append(Document( | |
text=content, | |
metadata={"file_path": file_path, "file_type": "text", "error": str(e)} | |
)) | |
except: | |
print(f"Failed to process {file_path}: {e}") | |
return documents | |
def create_advanced_index(self, documents: List[Document], use_hierarchical: bool = False) -> VectorStoreIndex: | |
if use_hierarchical or len(documents) > 10: | |
nodes = self.hierarchical_parser.get_nodes_from_documents(documents) | |
else: | |
nodes = self.sentence_window_parser.get_nodes_from_documents(documents) | |
index = VectorStoreIndex( | |
nodes, | |
embed_model=self.embed_model | |
) | |
return index | |
def create_context_aware_query_engine(self, index: VectorStoreIndex): | |
retriever = VectorIndexRetriever( | |
index=index, | |
similarity_top_k=10, | |
embed_model=self.embed_model | |
) | |
query_engine = RetrieverQueryEngine( | |
retriever=retriever, | |
node_postprocessors=[self.reranker], | |
llm=proj_llm | |
) | |
return query_engine | |
def comprehensive_rag_analysis(file_paths: List[str], query: str, task_context: str = "") -> str: | |
try: | |
rag_engine = EnhancedRAGQueryEngine(task_context) | |
documents = rag_engine.load_and_process_documents(file_paths) | |
if not documents: | |
return "No documents could be processed successfully." | |
total_text_length = sum(len(doc.text) for doc in documents) | |
use_hierarchical = total_text_length > 50000 or len(documents) > 5 | |
index = rag_engine.create_advanced_index(documents, use_hierarchical) | |
query_engine = rag_engine.create_context_aware_query_engine(index) | |
enhanced_query = f""" | |
Task Context: {task_context} | |
Original Query: {query} | |
Please analyze the provided documents and answer the query with precise, factual information. | |
""" | |
response = query_engine.query(enhanced_query) | |
result = f"**RAG Analysis Results:**\n\n" | |
result += f"**Documents Processed:** {len(documents)}\n" | |
result += f"**Answer:**\n{response.response}\n\n" | |
return result | |
except Exception as e: | |
return f"RAG analysis failed: {str(e)}" | |
def cross_document_analysis(file_paths: List[str], query: str, task_context: str = "") -> str: | |
try: | |
rag_engine = EnhancedRAGQueryEngine(task_context) | |
all_documents = [] | |
document_groups = {} | |
for file_path in file_paths: | |
docs = rag_engine.load_and_process_documents([file_path]) | |
doc_key = os.path.basename(file_path) | |
document_groups[doc_key] = docs | |
for doc in docs: | |
doc.metadata.update({ | |
"document_group": doc_key, | |
"total_documents": len(file_paths) | |
}) | |
all_documents.extend(docs) | |
index = rag_engine.create_advanced_index(all_documents, use_hierarchical=True) | |
query_engine = rag_engine.create_context_aware_query_engine(index) | |
response = query_engine.query(f"Task: {task_context}\nQuery: {query}") | |
result = f"**Cross-Document Analysis:**\n" | |
result += f"**Documents:** {list(document_groups.keys())}\n" | |
result += f"**Answer:**\n{response.response}\n" | |
return result | |
except Exception as e: | |
return f"Cross-document analysis failed: {str(e)}" | |
# Create tools | |
enhanced_rag_tool = FunctionTool.from_defaults( | |
fn=comprehensive_rag_analysis, | |
name="Enhanced RAG Analysis", | |
description="Comprehensive document analysis using advanced RAG with hybrid search and context-aware processing" | |
) | |
cross_document_tool = FunctionTool.from_defaults( | |
fn=cross_document_analysis, | |
name="Cross-Document Analysis", | |
description="Advanced analysis across multiple documents with cross-referencing capabilities" | |
) | |
# Analysis Agent | |
analysis_agent = FunctionAgent( | |
name="AnalysisAgent", | |
description="Advanced multimodal analysis using enhanced RAG with hybrid search and cross-document capabilities", | |
system_prompt=""" | |
You are an advanced analysis specialist with access to: | |
- Enhanced RAG with hybrid search and reranking | |
- Multi-format document processing (PDF, Word, CSV, images, text) | |
- Cross-document analysis and synthesis | |
- Context-aware query processing | |
Your capabilities: | |
1. Process multiple file types simultaneously | |
2. Perform semantic search across document collections | |
3. Cross-reference information between documents | |
4. Extract precise information with source attribution | |
5. Handle both text and visual content analysis | |
Always consider the GAIA task context and provide precise, well-sourced answers. | |
""", | |
llm=proj_llm, | |
tools=[enhanced_rag_tool, cross_document_tool], | |
max_steps=5 | |
) | |
class IntelligentSourceRouter: | |
def __init__(self): | |
# Initialize ArXiv and DuckDuckGo as LlamaIndex tools | |
self.arxiv_tool = ArxivToolSpec().to_tool_list()[0] | |
self.duckduckgo_tool = DuckDuckGoSearchToolSpec().to_tool_list()[0] | |
def detect_intent_and_route(self, query: str) -> str: | |
# Use your LLM to decide between arxiv and web_search | |
intent_prompt = f""" | |
Analyze this query and determine if it's scientific research or general information: | |
Query: "{query}" | |
Choose ONE source: | |
- arxiv: For scientific research, academic papers, technical studies, algorithms, experiments | |
- web_search: For all other information (current events, general facts, weather, how-to guides, etc.) | |
Respond with ONLY "arxiv" or "web_search". | |
""" | |
response = text_llm.complete(intent_prompt) | |
selected_source = response.text.strip().lower() | |
results = [f"**Query**: {query}", f"**Selected Source**: {selected_source}", "="*50] | |
try: | |
if selected_source == 'arxiv': | |
result = self.arxiv_tool.call(query=query, max_results=3) | |
results.append(f"**ArXiv Research:**\n{result}") | |
else: | |
result = self.duckduckgo_tool.call(query=query, max_results=5) | |
# Format results if needed | |
if isinstance(result, list): | |
formatted = [] | |
for i, r in enumerate(result, 1): | |
formatted.append( | |
f"{i}. **{r.get('title', '')}**\n URL: {r.get('href', '')}\n {r.get('body', '')}" | |
) | |
result = "\n".join(formatted) | |
results.append(f"**Web Search Results:**\n{result}") | |
except Exception as e: | |
results.append(f"**Search failed**: {str(e)}") | |
return "\n\n".join(results) | |
class IntelligentSourceRouter: | |
def __init__(self): | |
# Initialize Arxiv and DuckDuckGo tools | |
self.arxiv_tool = ArxivToolSpec().to_tool_list()[0] | |
self.duckduckgo_tool = DuckDuckGoSearchToolSpec().to_tool_list()[0] | |
def detect_intent_and_extract_content(self, query: str, max_results: int = 3) -> str: | |
# Use your LLM to decide between arxiv and web_search | |
intent_prompt = f""" | |
Analyze this query and determine if it's scientific research or general information: | |
Query: "{query}" | |
Choose ONE source: | |
- arxiv: For scientific research, academic papers, technical studies, algorithms, experiments | |
- web_search: For all other information (current events, general facts, weather, how-to guides, etc.) | |
Respond with ONLY "arxiv" or "web_search". | |
""" | |
response = text_llm.complete(intent_prompt) | |
selected_source = response.text.strip().lower() | |
results = [f"**Query**: {query}", f"**Selected Source**: {selected_source}", "="*50] | |
try: | |
if selected_source == 'arxiv': | |
# Extract abstracts and paper summaries (deep content) | |
arxiv_results = self.arxiv_tool.call(query=query, max_results=max_results) | |
results.append(f"**Extracted ArXiv Content:**\n{arxiv_results}") | |
else: | |
# DuckDuckGo returns a list of dicts with 'href', 'title', 'body' | |
web_results = self.duckduckgo_tool.call(query=query, max_results=max_results) | |
if isinstance(web_results, list): | |
formatted = [] | |
for i, r in enumerate(web_results, 1): | |
formatted.append( | |
f"{i}. **{r.get('title', '')}**\n URL: {r.get('href', '')}\n {r.get('body', '')}" | |
) | |
web_content = "\n".join(formatted) | |
else: | |
web_content = str(web_results) | |
results.append(f"**Extracted Web Content:**\n{web_content}") | |
except Exception as e: | |
results.append(f"**Extraction failed**: {str(e)}") | |
return "\n\n".join(results) | |
# Initialize router | |
intelligent_router = IntelligentSourceRouter() | |
# Create enhanced research tool | |
def enhanced_smart_research_tool(query: str, task_context: str = "", max_results: int = 3) -> str: | |
full_query = f"{query} {task_context}".strip() | |
return intelligent_router.detect_intent_and_extract_content(full_query, max_results=max_results) | |
research_tool = FunctionTool.from_defaults( | |
fn=enhanced_smart_research_tool, | |
name="Research Tool", | |
description="""Intelligent research specialist that automatically routes between scientific and general sources and extract content. Use this tool at least when you need: | |
**Scientific Research (ArXiv + Content Extraction):** | |
**General Research (Web + Content Extraction):** | |
**Automatic Features:** | |
- Intelligently selects between ArXiv and web search | |
- Extracts full content from web pages (not just snippets) | |
- Provides source attribution and detailed information | |
**When to use:** Questions requiring external knowledge not in your training data, current events, scientific research, or factual verification. | |
**Input format:** Provide the research query with any relevant context.""" | |
) | |
def execute_python_code(code: str) -> str: | |
try: | |
safe_globals = { | |
"__builtins__": { | |
"len": len, "str": str, "int": int, "float": float, | |
"list": list, "dict": dict, "sum": sum, "max": max, "min": min, | |
"round": round, "abs": abs, "sorted": sorted, "enumerate": enumerate, | |
"range": range, "zip": zip, "map": map, "filter": filter, | |
"any": any, "all": all, "type": type, "isinstance": isinstance, | |
"print": print, "open": open, "bool": bool, "set": set, "tuple": tuple | |
}, | |
# Core Python modules | |
"math": __import__("math"), | |
"datetime": __import__("datetime"), | |
"re": __import__("re"), | |
"os": __import__("os"), | |
"sys": __import__("sys"), | |
"json": __import__("json"), | |
"csv": __import__("csv"), | |
"random": __import__("random"), | |
"itertools": __import__("itertools"), | |
"collections": __import__("collections"), | |
"functools": __import__("functools"), | |
# Data Science and Numerical Computing | |
"numpy": __import__("numpy"), | |
"np": __import__("numpy"), | |
"pandas": __import__("pandas"), | |
"pd": __import__("pandas"), | |
"scipy": __import__("scipy"), | |
# Visualization | |
"matplotlib": __import__("matplotlib"), | |
"plt": __import__("matplotlib.pyplot"), | |
"seaborn": __import__("seaborn"), | |
"sns": __import__("seaborn"), | |
"plotly": __import__("plotly"), | |
# Machine Learning | |
"sklearn": __import__("sklearn"), | |
"xgboost": __import__("xgboost"), | |
"lightgbm": __import__("lightgbm"), | |
# Statistics | |
"statistics": __import__("statistics"), | |
"statsmodels": __import__("statsmodels"), | |
# Image Processing | |
"PIL": __import__("PIL"), | |
"cv2": __import__("cv2"), | |
"skimage": __import__("skimage"), | |
# Network and Web | |
"requests": __import__("requests"), | |
"urllib": __import__("urllib"), | |
# Text Processing | |
"nltk": __import__("nltk"), | |
"spacy": __import__("spacy"), | |
# Time Series | |
"pytz": __import__("pytz"), | |
# Utilities | |
"tqdm": __import__("tqdm"), | |
"pickle": __import__("pickle"), | |
"gzip": __import__("gzip"), | |
"base64": __import__("base64"), | |
"hashlib": __import__("hashlib"), | |
"uuid": __import__("uuid"), | |
# Scientific Computing | |
"sympy": __import__("sympy"), | |
"networkx": __import__("networkx"), | |
# Database | |
"sqlite3": __import__("sqlite3"), | |
# Parallel Processing | |
"multiprocessing": __import__("multiprocessing"), | |
"threading": __import__("threading"), | |
"concurrent": __import__("concurrent"), | |
} | |
exec_locals = {} | |
exec(code, safe_globals, exec_locals) | |
if 'result' in exec_locals: | |
return str(exec_locals['result']) | |
else: | |
return "Code executed successfully" | |
except Exception as e: | |
return f"Code execution failed: {str(e)}" | |
code_execution_tool = FunctionTool.from_defaults( | |
fn=execute_python_code, | |
name="Python Code Execution", | |
description="Execute Python code safely for calculations and data processing" | |
) | |
# Code Agent as ReActAgent with explicit code generation | |
code_agent = ReActAgent( | |
name="CodeAgent", | |
description="Advanced calculations, data processing, and final answer synthesis using ReAct reasoning with code generation", | |
system_prompt=""" | |
You are a coding and reasoning specialist using ReAct methodology. | |
For each task, follow this process: | |
1. THINK: Analyze what needs to be calculated or processed | |
2. PLAN: Design the approach and identify what code needs to be written | |
3. GENERATE: Write the appropriate Python code to solve the problem | |
4. ACT: Execute the generated code using the code execution tool | |
5. OBSERVE: Review results and determine if more work is needed | |
6. REPEAT: Continue until you have the final answer | |
When generating code: | |
- Write clear, well-commented Python code | |
- Use available libraries (numpy, pandas, matplotlib, etc.) | |
- Store your final result in a variable called 'result' | |
- Handle edge cases and potential errors | |
- Show intermediate steps for complex calculations | |
Always show your reasoning process clearly and provide exact answers as required by GAIA. | |
Example workflow: | |
THINK: I need to calculate the mean of a dataset | |
PLAN: Load data, use numpy or pandas to calculate mean | |
GENERATE: | |
``` | |
import numpy as np | |
data = | |
result = np.mean(data) | |
``` | |
ACT: [Execute the code using the tool] | |
OBSERVE: Check if result is correct and complete | |
""", | |
llm=proj_llm, | |
tools=[code_execution_tool], | |
max_steps=5 | |
) | |
analysis_tool = FunctionTool.from_defaults( | |
fn=analysis_function, | |
name="AnalysisAgent", | |
description="""Advanced multimodal document analysis specialist. Use this tool at least when you need to: | |
**Document Processing:** | |
- Analyze PDF, Word, CSV, or image files provided with the question | |
- Extract specific information from tables, charts, or structured documents | |
- Cross-reference information across multiple documents | |
- Perform semantic search within document collections | |
**Content Analysis:** | |
- Summarize long documents or extract key facts | |
- Find specific data points, numbers, or text within files | |
- Analyze visual content in images (charts, graphs, diagrams) | |
- Compare information between different document sources | |
**When to use:** Questions involving file attachments, document analysis, data extraction from PDFs/images, or when you need to process structured/unstructured content. | |
**Input format:** Provide the query and mention any relevant files or context.""" | |
) | |
code_tool = FunctionTool.from_defaults( | |
fn=code_function, | |
name="CodeAgent", | |
description="""Advanced computational specialist using ReAct reasoning. Use this tool at least when you need: | |
**Mathematical Calculations:** | |
- Complex arithmetic, algebra, statistics, probability | |
- Unit conversions, percentage calculations | |
- Financial calculations (interest, loans, investments) | |
- Scientific calculations (physics, chemistry formulas) | |
**Data Processing:** | |
- Parsing and analyzing numerical data | |
- String manipulation and text processing | |
- Date/time calculations and conversions | |
- List operations, sorting, filtering | |
**Logical Operations:** | |
- Step-by-step problem solving with code | |
- Verification of calculations or logic | |
- Pattern analysis and data validation | |
- Algorithm implementation for specific problems | |
**Programming Tasks:** | |
- Code generation for specific computational needs | |
- Data structure manipulation | |
- Regular expression operations | |
**When to use:** Questions requiring precise calculations, data manipulation, logical reasoning with code verification, mathematical problem solving, or when you need to process numerical/textual data programmatically. | |
**Input format:** Describe the calculation or processing task clearly, including any specific requirements or constraints.""" | |
) | |
class EnhancedGAIAAgent: | |
def __init__(self): | |
print("Initializing Enhanced GAIA Agent...") | |
# Vérification du token HuggingFace | |
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
if not hf_token: | |
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is required") | |
# Agent coordinateur principal qui utilise les agents spécialisés comme tools | |
self.coordinator = ReActAgent( | |
name="GAIACoordinator", | |
description="Main GAIA coordinator that uses specialist agents as intelligent tools", | |
system_prompt=""" | |
You are the main GAIA coordinator using ReAct reasoning methodology. | |
Your process: | |
1. THINK: Analyze the GAIA question thoroughly | |
2. ACT: Use your specialist tools IF RELEVANT | |
3. OBSERVE: Review results from specialist tools | |
4. REPEAT: Continue until you have the final answer. If you give a final answer, FORMAT: Ensure answer is EXACT GAIA format (number only, word only, etc.) | |
IMPORTANT: Use tools strategically - only when their specific expertise is needed. | |
For simple questions, you can answer directly without using any tools. | |
CRITICAL: Your final answer must be EXACT and CONCISE as required by GAIA format: | |
- For numbers: provide only the number (e.g., "42" or "3.14") | |
- For strings: provide only the exact string (e.g., "Paris" or "Einstein") | |
- For lists: use comma separation (e.g., "apple, banana, orange") | |
- NO explanations, NO additional text, ONLY the precise answer | |
""", | |
llm=proj_llm, | |
tools=[analysis_tool, research_tool, code_tool], | |
max_steps = 10 | |
) | |
async def solve_gaia_question(self, question_data: Dict[str, Any]) -> str: | |
question = question_data.get("Question", "") | |
task_id = question_data.get("task_id", "") | |
context_prompt = f""" | |
GAIA Task ID: {task_id} | |
Question: {question} | |
{f"Associated files: {question_data.get('file_name', '')}" if 'file_name' in question_data else 'No files provided'} | |
Instructions: | |
1. Analyze this GAIA question using ReAct reasoning | |
2. Use specialist tools ONLY when their specific expertise is needed | |
3. Provide a precise, exact answer in GAIA format | |
Begin your reasoning process: | |
""" | |
try: | |
from llama_index.core.workflow import Context | |
ctx = Context(self.coordinator) | |
response = await self.coordinator.run(ctx=ctx, user_msg=context_prompt) | |
print (response) | |
return str(response) | |
except Exception as e: | |
return f"Error processing question: {str(e)}" | |