ConradLax's picture
revert
8c29057
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from fastapi import File, UploadFile
from fastapi.responses import StreamingResponse
from typing import List
from pdf2image import convert_from_bytes
import csv
import io
from transformers import pipeline
app = FastAPI()
"""## Poppler dir"""
poppler_path = "poppler-23.11.0/Library/bin"
@app.post("/classify")
async def classify_doc(files: List[UploadFile] = File(...)):
classificationResults = {}
for file in files:
try:
contents = file.file.read()
filename = file.filename
if filename.endswith('.pdf'):
try:
pages = convert_from_bytes(contents, poppler_path = poppler_path)
print(pages)
for pagenum, image in enumerate(pages):
classificationRes, dtype_conf = doctype_classify(image.convert('RGB'), filename)
# add/update classification result dictionary
if (classificationRes in classificationResults):
classificationResults.update({classificationRes : classificationResults[classificationRes] + 1})
else:
classificationResults.update({classificationRes : 1})
except Exception as err:
print(err)
return f"Error in opening {filename}, {err}"
# png, jpg, jpeg files
else:
classificationRes = classify_acct_dtype_str(contents, filename)
# add/update classification result dictionary
if (classificationRes in classificationResults):
classificationResults.update({classificationRes : classificationResults[classificationRes] + 1})
else:
classificationResults.update({classificationRes : 1})
except Exception as err:
print(Exception, err)
return {"message": "There was an error in uploading file(s)"}
finally:
file.file.close()
# Convert dictionary to CSV string
csv_data = io.StringIO()
csv_writer = csv.writer(csv_data)
csv_writer.writerow(["Type", "Count"]) # Header row
for key, value in classificationResults.items():
csv_writer.writerow([key, value])
return StreamingResponse(
iter([csv_data.getvalue()]),
media_type="text/csv",
headers={"Content-Disposition": f"attachment; filename=data.csv"}
)
# return {"message": f"{[file.filename for file in files]} : {[classifyFiles(file) for file in files]}"}
def classifyFiles(file):
try:
contents = file.file.read()
filename = file.filename
classificationResults = []
if filename.endswith('.pdf'):
try:
pages = convert_from_bytes(open(file, 'rb').read())
for pagenum, image in enumerate(pages):
if pagenum != 0 and pagenum < len(pages):
classificationRes = classify_acct_dtype_str(contents, filename)
# classificationResults[f"{pagenum:02d}"] = {
# 'doctype': classificationRes
# }
except:
return f"Error in opening {filename}"
else:
classificationRes = classify_acct_dtype_str(contents, filename)
# classificationResults[f"{0:02d}"] = {
# 'doctype' : classificationRes
# }
except Exception as err:
print(Exception, err)
return {"message": "There was an error in uploading file(s)"}
finally:
file.file.close()
return classificationRes
app.mount("/", StaticFiles(directory="static", html=True), name="static")
@app.get("/")
def index() -> FileResponse:
return FileResponse(path="/app/static/index.html", media_type="text/html")
import re
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
from datasets import load_dataset
import os
from PIL import Image
# Doc classifier model
classifier_doctype_processor = DonutProcessor.from_pretrained("calumpianojericho/donutclassifier_acctdocs_by_doctype")
classifier_doctype_model = VisionEncoderDecoderModel.from_pretrained("calumpianojericho/donutclassifier_acctdocs_by_doctype")
"""### Inference Code"""
def inference(input, model, processor, threshold=1.0, task_prompt="", get_confidence=False):
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
is_confident = True
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
pil_img=input
image = np.array(pil_img)
pixel_values = processor(image, return_tensors="pt").pixel_values
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id= processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
output_scores=True,
)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
seq = processor.token2json(sequence)
if get_confidence:
return seq, pred_confidence(outputs.scores, threshold)
return seq
def pred_confidence(output_scores, threshold):
is_confident=True
for score in output_scores:
exp_scores = np.exp(score[0].cpu().numpy()) # scores are logits, we use the exp function so that all values are positive
sum_exp = np.sum(exp_scores) # taking the sum of the token scores
idx = np.argmax(exp_scores) # taking the index of the token with the highest score
prob_max = exp_scores[idx]/sum_exp # normalizing the token with the highest score wrt the sum of all scores. Returns probability
if prob_max < threshold:
is_confident = False
# print(prob_max)
return is_confident
CUDA_LAUNCH_BLOCKING=1
def parse_text(input, filename):
model = base_model
processor = base_processor
seq = inference(input, model, processor, task_prompt="<s_synthdog>")
return str(seq)
def doctype_classify(input, filename):
model = classifier_doctype_model
processor = classifier_doctype_processor
seq, is_confident = inference(input, model, processor, threshold=0.90, task_prompt="<s_classifier_acct>", get_confidence=True)
return seq.get('class'), is_confident
def account_classify(input, filename):
model = classifier_account_model
processor = classifier_account_processor
seq, is_confident = inference(input, model, processor, threshold=0.999, task_prompt="<s_classifier_acct>", get_confidence=True)
return seq.get('class'), is_confident
"""## Text processing/string matcher code"""
import locale
locale.getpreferredencoding = lambda: "UTF-8"
"""## Classify Document Images"""
import numpy as np
import csv
import re
import os
import requests
from io import BytesIO
def classify_acct_dtype_str(content, filename):
# response = requests.get("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg")
# ipt = Image.open(BytesIO(response.content))
try:
ipt = Image.open(BytesIO(content))
dtype_inf, dtype_conf = doctype_classify(ipt, filename)
except Exception as err:
return f"Error in opening {filename}, {err}"
return dtype_inf
# classify_acct_dtype_str("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg")