ConradLax's picture
test: classification model
53a3910
raw
history blame
4.49 kB
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from transformers import pipeline
app = FastAPI()
pipe_flan = pipeline("text2text-generation", model="google/flan-t5-small")
@app.get("/infer_t5")
def t5(input):
# output = pipe_flan(input)
# return {"output": output[0]["generated_text"]}
return classify_acct_dtype_str("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg")
app.mount("/", StaticFiles(directory="static", html=True), name="static")
@app.get("/")
def index() -> FileResponse:
return FileResponse(path="/app/static/index.html", media_type="text/html")
# Doc classifier model
classifier_doctype_processor = DonutProcessor.from_pretrained("calumpianojericho/donutclassifier_acctdocs_by_doctype")
classifier_doctype_model = VisionEncoderDecoderModel.from_pretrained("calumpianojericho/donutclassifier_acctdocs_by_doctype")
"""### Inference Code"""
def inference(input, model, processor, threshold=1.0, task_prompt="", get_confidence=False):
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
is_confident = True
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
pil_img=input
image = np.array(pil_img)
pixel_values = processor(image, return_tensors="pt").pixel_values
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id= processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
output_scores=True,
)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
seq = processor.token2json(sequence)
if get_confidence:
return seq, pred_confidence(outputs.scores, threshold)
return seq
def pred_confidence(output_scores, threshold):
is_confident=True
for score in output_scores:
exp_scores = np.exp(score[0].cpu().numpy()) # scores are logits, we use the exp function so that all values are positive
sum_exp = np.sum(exp_scores) # taking the sum of the token scores
idx = np.argmax(exp_scores) # taking the index of the token with the highest score
prob_max = exp_scores[idx]/sum_exp # normalizing the token with the highest score wrt the sum of all scores. Returns probability
if prob_max < threshold:
is_confident = False
# print(prob_max)
return is_confident
CUDA_LAUNCH_BLOCKING=1
def parse_text(input, filename):
model = base_model
processor = base_processor
seq = inference(input, model, processor, task_prompt="<s_synthdog>")
return str(seq)
def doctype_classify(input, filename):
model = classifier_doctype_model
processor = classifier_doctype_processor
seq, is_confident = inference(input, model, processor, threshold=0.90, task_prompt="<s_classifier_acct>", get_confidence=True)
return seq.get('class'), is_confident
def account_classify(input, filename):
model = classifier_account_model
processor = classifier_account_processor
seq, is_confident = inference(input, model, processor, threshold=0.999, task_prompt="<s_classifier_acct>", get_confidence=True)
return seq.get('class'), is_confident
"""## Text processing/string matcher code"""
import locale
locale.getpreferredencoding = lambda: "UTF-8"
"""## Text processing/string matcher code"""
import locale
locale.getpreferredencoding = lambda: "UTF-8"
"""## Classify Document Images"""
import numpy as np
import csv
import re
import os
import requests
def classify_acct_dtype_str(input_path):
response = requests.get("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg")
dtype_inf, dtype_conf = doctype_classify(response, "city-streets.jpg")
return dtype_inf
classify_acct_dtype_str("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg")