Spaces:
Sleeping
Sleeping
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive | |
from toolbox import CatchException, report_execption, write_results_to_file | |
from toolbox import update_ui | |
def get_meta_information(url, chatbot, history): | |
import requests | |
import arxiv | |
import difflib | |
from bs4 import BeautifulSoup | |
from toolbox import get_conf | |
proxies, = get_conf('proxies') | |
headers = { | |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36', | |
} | |
# 发送 GET 请求 | |
response = requests.get(url, proxies=proxies, headers=headers) | |
# 解析网页内容 | |
soup = BeautifulSoup(response.text, "html.parser") | |
def string_similar(s1, s2): | |
return difflib.SequenceMatcher(None, s1, s2).quick_ratio() | |
profile = [] | |
# 获取所有文章的标题和作者 | |
for result in soup.select(".gs_ri"): | |
title = result.a.text.replace('\n', ' ').replace(' ', ' ') | |
author = result.select_one(".gs_a").text | |
try: | |
citation = result.select_one(".gs_fl > a[href*='cites']").text # 引用次数是链接中的文本,直接取出来 | |
except: | |
citation = 'cited by 0' | |
abstract = result.select_one(".gs_rs").text.strip() # 摘要在 .gs_rs 中的文本,需要清除首尾空格 | |
search = arxiv.Search( | |
query = title, | |
max_results = 1, | |
sort_by = arxiv.SortCriterion.Relevance, | |
) | |
paper = next(search.results()) | |
if string_similar(title, paper.title) > 0.90: # same paper | |
abstract = paper.summary.replace('\n', ' ') | |
is_paper_in_arxiv = True | |
else: # different paper | |
abstract = abstract | |
is_paper_in_arxiv = False | |
paper = next(search.results()) | |
print(title) | |
print(author) | |
print(citation) | |
profile.append({ | |
'title':title, | |
'author':author, | |
'citation':citation, | |
'abstract':abstract, | |
'is_paper_in_arxiv':is_paper_in_arxiv, | |
}) | |
chatbot[-1] = [chatbot[-1][0], title + f'\n\n是否在arxiv中(不在arxiv中无法获取完整摘要):{is_paper_in_arxiv}\n\n' + abstract] | |
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 | |
return profile | |
def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): | |
# 基本信息:功能、贡献者 | |
chatbot.append([ | |
"函数插件功能?", | |
"分析用户提供的谷歌学术(google scholar)搜索页面中,出现的所有文章: binary-husky,插件初始化中..."]) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
# 尝试导入依赖,如果缺少依赖,则给出安装建议 | |
try: | |
import arxiv | |
import math | |
from bs4 import BeautifulSoup | |
except: | |
report_execption(chatbot, history, | |
a = f"解析项目: {txt}", | |
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4 arxiv```。") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
# 清空历史,以免输入溢出 | |
history = [] | |
meta_paper_info_list = yield from get_meta_information(txt, chatbot, history) | |
batchsize = 5 | |
for batch in range(math.ceil(len(meta_paper_info_list)/batchsize)): | |
if len(meta_paper_info_list[:batchsize]) > 0: | |
i_say = "下面是一些学术文献的数据,提取出以下内容:" + \ | |
"1、英文题目;2、中文题目翻译;3、作者;4、arxiv公开(is_paper_in_arxiv);4、引用数量(cite);5、中文摘要翻译。" + \ | |
f"以下是信息源:{str(meta_paper_info_list[:batchsize])}" | |
inputs_show_user = f"请分析此页面中出现的所有文章:{txt},这是第{batch+1}批" | |
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive( | |
inputs=i_say, inputs_show_user=inputs_show_user, | |
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[], | |
sys_prompt="你是一个学术翻译,请从数据中提取信息。你必须使用Markdown表格。你必须逐个文献进行处理。" | |
) | |
history.extend([ f"第{batch+1}批", gpt_say ]) | |
meta_paper_info_list = meta_paper_info_list[batchsize:] | |
chatbot.append(["状态?", | |
"已经全部完成,您可以试试让AI写一个Related Works,例如您可以继续输入Write an academic \"Related Works\" section about \"你搜索的研究领域\" for me."]) | |
msg = '正常' | |
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面 | |
res = write_results_to_file(history) | |
chatbot.append(("完成了吗?", res)); | |
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面 | |