Spaces:
Runtime error
Runtime error
from transformers import AutoModel, AutoTokenizer | |
import time | |
import os | |
import json | |
import threading | |
import importlib | |
from toolbox import update_ui, get_conf | |
from multiprocessing import Process, Pipe | |
load_message = "ChatGLMFT尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLMFT消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……" | |
def string_to_options(arguments): | |
import argparse | |
import shlex | |
# Create an argparse.ArgumentParser instance | |
parser = argparse.ArgumentParser() | |
# Add command-line arguments | |
parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo") | |
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='') | |
parser.add_argument("--system_prompt", type=str, help="System prompt", default='') | |
parser.add_argument("--batch", type=int, help="System prompt", default=50) | |
# Parse the arguments | |
args = parser.parse_args(shlex.split(arguments)) | |
return args | |
################################################################################# | |
class GetGLMFTHandle(Process): | |
def __init__(self): | |
super().__init__(daemon=True) | |
self.parent, self.child = Pipe() | |
self.chatglmft_model = None | |
self.chatglmft_tokenizer = None | |
self.info = "" | |
self.success = True | |
self.check_dependency() | |
self.start() | |
self.threadLock = threading.Lock() | |
def check_dependency(self): | |
try: | |
import sentencepiece | |
self.info = "依赖检测通过" | |
self.success = True | |
except: | |
self.info = "缺少ChatGLMFT的依赖,如果要使用ChatGLMFT,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_chatglm.txt`安装ChatGLM的依赖。" | |
self.success = False | |
def ready(self): | |
return self.chatglmft_model is not None | |
def run(self): | |
# 子进程执行 | |
# 第一次运行,加载参数 | |
retry = 0 | |
while True: | |
try: | |
if self.chatglmft_model is None: | |
from transformers import AutoConfig | |
import torch | |
# conf = 'request_llms/current_ptune_model.json' | |
# if not os.path.exists(conf): raise RuntimeError('找不到微调模型信息') | |
# with open(conf, 'r', encoding='utf8') as f: | |
# model_args = json.loads(f.read()) | |
CHATGLM_PTUNING_CHECKPOINT = get_conf('CHATGLM_PTUNING_CHECKPOINT') | |
assert os.path.exists(CHATGLM_PTUNING_CHECKPOINT), "找不到微调模型检查点" | |
conf = os.path.join(CHATGLM_PTUNING_CHECKPOINT, "config.json") | |
with open(conf, 'r', encoding='utf8') as f: | |
model_args = json.loads(f.read()) | |
if 'model_name_or_path' not in model_args: | |
model_args['model_name_or_path'] = model_args['_name_or_path'] | |
self.chatglmft_tokenizer = AutoTokenizer.from_pretrained( | |
model_args['model_name_or_path'], trust_remote_code=True) | |
config = AutoConfig.from_pretrained( | |
model_args['model_name_or_path'], trust_remote_code=True) | |
config.pre_seq_len = model_args['pre_seq_len'] | |
config.prefix_projection = model_args['prefix_projection'] | |
print(f"Loading prefix_encoder weight from {CHATGLM_PTUNING_CHECKPOINT}") | |
model = AutoModel.from_pretrained(model_args['model_name_or_path'], config=config, trust_remote_code=True) | |
prefix_state_dict = torch.load(os.path.join(CHATGLM_PTUNING_CHECKPOINT, "pytorch_model.bin")) | |
new_prefix_state_dict = {} | |
for k, v in prefix_state_dict.items(): | |
if k.startswith("transformer.prefix_encoder."): | |
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v | |
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) | |
if model_args['quantization_bit'] is not None and model_args['quantization_bit'] != 0: | |
print(f"Quantized to {model_args['quantization_bit']} bit") | |
model = model.quantize(model_args['quantization_bit']) | |
model = model.cuda() | |
if model_args['pre_seq_len'] is not None: | |
# P-tuning v2 | |
model.transformer.prefix_encoder.float() | |
self.chatglmft_model = model.eval() | |
break | |
else: | |
break | |
except Exception as e: | |
retry += 1 | |
if retry > 3: | |
self.child.send('[Local Message] Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数。') | |
raise RuntimeError("不能正常加载ChatGLMFT的参数!") | |
while True: | |
# 进入任务等待状态 | |
kwargs = self.child.recv() | |
# 收到消息,开始请求 | |
try: | |
for response, history in self.chatglmft_model.stream_chat(self.chatglmft_tokenizer, **kwargs): | |
self.child.send(response) | |
# # 中途接收可能的终止指令(如果有的话) | |
# if self.child.poll(): | |
# command = self.child.recv() | |
# if command == '[Terminate]': break | |
except: | |
from toolbox import trimmed_format_exc | |
self.child.send('[Local Message] Call ChatGLMFT fail.' + '\n```\n' + trimmed_format_exc() + '\n```\n') | |
# 请求处理结束,开始下一个循环 | |
self.child.send('[Finish]') | |
def stream_chat(self, **kwargs): | |
# 主进程执行 | |
self.threadLock.acquire() | |
self.parent.send(kwargs) | |
while True: | |
res = self.parent.recv() | |
if res != '[Finish]': | |
yield res | |
else: | |
break | |
self.threadLock.release() | |
global glmft_handle | |
glmft_handle = None | |
################################################################################# | |
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False): | |
""" | |
多线程方法 | |
函数的说明请见 request_llms/bridge_all.py | |
""" | |
global glmft_handle | |
if glmft_handle is None: | |
glmft_handle = GetGLMFTHandle() | |
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glmft_handle.info | |
if not glmft_handle.success: | |
error = glmft_handle.info | |
glmft_handle = None | |
raise RuntimeError(error) | |
# chatglmft 没有 sys_prompt 接口,因此把prompt加入 history | |
history_feedin = [] | |
history_feedin.append(["What can I do?", sys_prompt]) | |
for i in range(len(history)//2): | |
history_feedin.append([history[2*i], history[2*i+1]] ) | |
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可 | |
response = "" | |
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): | |
if len(observe_window) >= 1: observe_window[0] = response | |
if len(observe_window) >= 2: | |
if (time.time()-observe_window[1]) > watch_dog_patience: | |
raise RuntimeError("程序终止。") | |
return response | |
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): | |
""" | |
单线程方法 | |
函数的说明请见 request_llms/bridge_all.py | |
""" | |
chatbot.append((inputs, "")) | |
global glmft_handle | |
if glmft_handle is None: | |
glmft_handle = GetGLMFTHandle() | |
chatbot[-1] = (inputs, load_message + "\n\n" + glmft_handle.info) | |
yield from update_ui(chatbot=chatbot, history=[]) | |
if not glmft_handle.success: | |
glmft_handle = None | |
return | |
if additional_fn is not None: | |
from core_functional import handle_core_functionality | |
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot) | |
# 处理历史信息 | |
history_feedin = [] | |
history_feedin.append(["What can I do?", system_prompt] ) | |
for i in range(len(history)//2): | |
history_feedin.append([history[2*i], history[2*i+1]] ) | |
# 开始接收chatglmft的回复 | |
response = "[Local Message] 等待ChatGLMFT响应中 ..." | |
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): | |
chatbot[-1] = (inputs, response) | |
yield from update_ui(chatbot=chatbot, history=history) | |
# 总结输出 | |
if response == "[Local Message] 等待ChatGLMFT响应中 ...": | |
response = "[Local Message] ChatGLMFT响应异常 ..." | |
history.extend([inputs, response]) | |
yield from update_ui(chatbot=chatbot, history=history) | |