| import csv | |
| import gradio as gr | |
| import pandas as pd | |
| from sentiment_analyser import RandomAnalyser, RoBERTaAnalyser, ChatGPTAnalyser | |
| import matplotlib.pyplot as plt | |
| from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix | |
| def plot_bar(value_counts): | |
| fig, ax = plt.subplots(figsize=(6, 6)) | |
| value_counts.plot.barh(ax=ax) | |
| ax.bar_label(ax.containers[0]) | |
| plt.title('Frequency of Predictions') | |
| return fig | |
| def plot_confusion_matrix(y_pred, y_true): | |
| cm = confusion_matrix(y_true, y_pred, normalize='true') | |
| fig, ax = plt.subplots(figsize=(6, 6)) | |
| labels = [] | |
| for label in SENTI_MAPPING.keys(): | |
| if (label in y_pred.values) or (label in y_true.values): | |
| labels.append(label) | |
| disp = ConfusionMatrixDisplay(confusion_matrix=cm, | |
| display_labels=labels) | |
| disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False) | |
| plt.title("Normalized Confusion Matrix") | |
| return fig | |
| def classify(num: int): | |
| samples_df = df.sample(num) | |
| X = samples_df['Text'].tolist() | |
| y = samples_df['Label'] | |
| roberta = MODEL_MAPPING[OUR_MODEL] | |
| y_pred = pd.Series(roberta.predict(X), index=samples_df.index) | |
| samples_df['Predict'] = y_pred | |
| bar = plot_bar(y_pred.value_counts()) | |
| cm = plot_confusion_matrix(y_pred, y) | |
| plt.close() | |
| return samples_df, bar, cm | |
| def analysis(Text): | |
| keys = [] | |
| values = [] | |
| for name, model in MODEL_MAPPING.items(): | |
| keys.append(name) | |
| values.append(SENTI_MAPPING[model.predict([Text])[0]]) | |
| return pd.DataFrame([values], columns=keys) | |
| def analyse_file(file): | |
| output_name = 'output.csv' | |
| with open(output_name, mode='w', newline='') as output: | |
| writer = csv.writer(output) | |
| header = ['Text', 'Label'] | |
| writer.writerow(header) | |
| model = MODEL_MAPPING[OUR_MODEL] | |
| with open(file.name) as f: | |
| for line in f: | |
| text = line[:-1] | |
| sentiment = model.predict([text]) | |
| writer.writerow([text, sentiment[0]]) | |
| return output_name | |
| MODEL_MAPPING = { | |
| 'Random': RandomAnalyser(), | |
| 'RoBERTa': RoBERTaAnalyser(), | |
| 'ChatGPT': RandomAnalyser(), | |
| } | |
| OUR_MODEL = 'RoBERTa' | |
| SENTI_MAPPING = { | |
| 'negative': '😭', | |
| 'neutral': '😶', | |
| 'positive': '🥰' | |
| } | |
| TITLE = "Sentiment Analysis on Software Engineer Texts" | |
| DESCRIPTION = { | |
| 'en': ( | |
| "This is the demo page for our model: " | |
| "[Cloudy1225/stackoverflow-roberta-base-sentiment]" | |
| "(https://huggingface.co/Cloudy1225/stackoverflow-roberta-base-sentiment)." | |
| ), | |
| 'zh': ( | |
| "这里是第16组“睿王和他的五个小跟班”软工三迭代三模型演示页面。" | |
| "模型链接:[Cloudy1225/stackoverflow-roberta-base-sentiment]" | |
| "(https://huggingface.co/Cloudy1225/stackoverflow-roberta-base-sentiment)." | |
| ) | |
| } | |
| PROMPT1 = { | |
| 'en': ( | |
| "Enter text in the left text box and press Enter, and the sentiment analysis results will be output on the right. " | |
| "Here, we present three types of results, which come from random, our model, and ChatGPT." | |
| ), | |
| 'zh': ( | |
| "在左侧文本框中输入文本并按回车键,右侧将输出情感分析结果。" | |
| "这里我们展示了三种结果,分别是随机结果、模型结果和 ChatGPT 结果。" | |
| ) | |
| } | |
| PROMPT2 = { | |
| 'en': ( | |
| "Upload a txt/csv file in the left file box, and the model will perform sentiment analysis on each line of the input text. " | |
| "You can download the output file on the right. " | |
| "The output file will be in CSV format with two columns: the original text, and the classification results." | |
| ), | |
| 'zh': ( | |
| "在左侧文件框中上传 txt/csv 文件,模型会对输入文本的每一行当作一个文本进行情感分析。" | |
| "可以在右侧下载输出文件,输出文件为两列 csv 格式,第一列为原始文本,第二列为分类结果。" | |
| ) | |
| } | |
| PROMPT3 = { | |
| 'en': ( | |
| "Here we evaluate our model on the StackOverflow4423 dataset. " | |
| "Sliding the slider will sample a specified number of samples from the StackOverflow4423 dataset and predict their sentiment labels. " | |
| "Based on the prediction results, a label distribution chart and a confusion matrix will be plotted." | |
| ), | |
| 'zh': ( | |
| "这里是在 StackOverflow4423 数据集上评估我们的模型。" | |
| "滑动 Slider,将会从 StackOverflow4423 数据集中抽样出指定数量的样本,预测其情感标签。" | |
| "并根据预测结果绘制标签分布图和混淆矩阵。" | |
| ) | |
| } | |
| DEFAULT_LANG = 'en' | |
| MAX_SAMPLES = 64 | |
| df = pd.read_csv('./SOF4423.csv') | |
| def set_language(lang): | |
| return DESCRIPTION[lang], PROMPT1[lang], PROMPT2[lang], PROMPT3[lang] | |
| with gr.Blocks(title=TITLE) as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.HTML(f"<H1>{TITLE}</H1>") | |
| with gr.Column(min_width=160): | |
| language_selector = gr.Radio( | |
| ['en', 'zh'], label="Select Language", value=DEFAULT_LANG, | |
| interactive=True, show_label=False, container=False | |
| ) | |
| description = gr.Markdown(DESCRIPTION[DEFAULT_LANG]) | |
| gr.HTML("<H2>Model Inference</H2>") | |
| prompt1 = gr.Markdown(PROMPT1[DEFAULT_LANG]) | |
| with gr.Row(): | |
| with gr.Column(): | |
| text_input = gr.Textbox(label='Input', | |
| placeholder="Enter a positive or negative sentence here...") | |
| with gr.Column(): | |
| senti_output = gr.Dataframe(type="pandas", value=[['😋', '😋', '😋']], | |
| headers=list(MODEL_MAPPING.keys()), interactive=False) | |
| text_input.submit(analysis, inputs=text_input, outputs=senti_output, show_progress='full') | |
| prompt2 = gr.Markdown(PROMPT2[DEFAULT_LANG]) | |
| with gr.Row(): | |
| with gr.Column(): | |
| file_input = gr.File(label='File', | |
| file_types=['.txt', '.csv']) | |
| with gr.Column(): | |
| file_output = gr.File(label='Output') | |
| file_input.upload(analyse_file, inputs=file_input, outputs=file_output) | |
| gr.HTML("<H2>Model Evaluation</H2>") | |
| prompt3 = gr.Markdown(PROMPT3[DEFAULT_LANG]) | |
| input_models = list(MODEL_MAPPING) | |
| input_n_samples = gr.Slider( | |
| minimum=4, | |
| maximum=MAX_SAMPLES, | |
| value=8, | |
| step=4, | |
| label='Number of samples' | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| bar_plot = gr.Plot(label='Predictions Frequency') | |
| with gr.Column(): | |
| cm_plot = gr.Plot(label='Confusion Matrix') | |
| with gr.Row(): | |
| dataframe = gr.Dataframe(type="pandas", wrap=True, headers=['Text', 'Label', 'Predict']) | |
| input_n_samples.change(fn=classify, inputs=input_n_samples, outputs=[dataframe, bar_plot, cm_plot]) | |
| language_selector.change(fn=set_language, inputs=language_selector, | |
| outputs=[description, prompt1, prompt2, prompt3]) | |
| demo.launch() | |