Cloudy1225's picture
Update app.py
23ddf94 verified
import csv
import gradio as gr
import pandas as pd
from sentiment_analyser import RandomAnalyser, RoBERTaAnalyser, ChatGPTAnalyser
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
def plot_bar(value_counts):
fig, ax = plt.subplots(figsize=(6, 6))
value_counts.plot.barh(ax=ax)
ax.bar_label(ax.containers[0])
plt.title('Frequency of Predictions')
return fig
def plot_confusion_matrix(y_pred, y_true):
cm = confusion_matrix(y_true, y_pred, normalize='true')
fig, ax = plt.subplots(figsize=(6, 6))
labels = []
for label in SENTI_MAPPING.keys():
if (label in y_pred.values) or (label in y_true.values):
labels.append(label)
disp = ConfusionMatrixDisplay(confusion_matrix=cm,
display_labels=labels)
disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False)
plt.title("Normalized Confusion Matrix")
return fig
def classify(num: int):
samples_df = df.sample(num)
X = samples_df['Text'].tolist()
y = samples_df['Label']
roberta = MODEL_MAPPING[OUR_MODEL]
y_pred = pd.Series(roberta.predict(X), index=samples_df.index)
samples_df['Predict'] = y_pred
bar = plot_bar(y_pred.value_counts())
cm = plot_confusion_matrix(y_pred, y)
plt.close()
return samples_df, bar, cm
def analysis(Text):
keys = []
values = []
for name, model in MODEL_MAPPING.items():
keys.append(name)
values.append(SENTI_MAPPING[model.predict([Text])[0]])
return pd.DataFrame([values], columns=keys)
def analyse_file(file):
output_name = 'output.csv'
with open(output_name, mode='w', newline='') as output:
writer = csv.writer(output)
header = ['Text', 'Label']
writer.writerow(header)
model = MODEL_MAPPING[OUR_MODEL]
with open(file.name) as f:
for line in f:
text = line[:-1]
sentiment = model.predict([text])
writer.writerow([text, sentiment[0]])
return output_name
MODEL_MAPPING = {
'Random': RandomAnalyser(),
'RoBERTa': RoBERTaAnalyser(),
'ChatGPT': RandomAnalyser(),
}
OUR_MODEL = 'RoBERTa'
SENTI_MAPPING = {
'negative': '😭',
'neutral': '😶',
'positive': '🥰'
}
TITLE = "Sentiment Analysis on Software Engineer Texts"
DESCRIPTION = {
'en': (
"This is the demo page for our model: "
"[Cloudy1225/stackoverflow-roberta-base-sentiment]"
"(https://huggingface.co/Cloudy1225/stackoverflow-roberta-base-sentiment)."
),
'zh': (
"这里是第16组“睿王和他的五个小跟班”软工三迭代三模型演示页面。"
"模型链接:[Cloudy1225/stackoverflow-roberta-base-sentiment]"
"(https://huggingface.co/Cloudy1225/stackoverflow-roberta-base-sentiment)."
)
}
PROMPT1 = {
'en': (
"Enter text in the left text box and press Enter, and the sentiment analysis results will be output on the right. "
"Here, we present three types of results, which come from random, our model, and ChatGPT."
),
'zh': (
"在左侧文本框中输入文本并按回车键,右侧将输出情感分析结果。"
"这里我们展示了三种结果,分别是随机结果、模型结果和 ChatGPT 结果。"
)
}
PROMPT2 = {
'en': (
"Upload a txt/csv file in the left file box, and the model will perform sentiment analysis on each line of the input text. "
"You can download the output file on the right. "
"The output file will be in CSV format with two columns: the original text, and the classification results."
),
'zh': (
"在左侧文件框中上传 txt/csv 文件,模型会对输入文本的每一行当作一个文本进行情感分析。"
"可以在右侧下载输出文件,输出文件为两列 csv 格式,第一列为原始文本,第二列为分类结果。"
)
}
PROMPT3 = {
'en': (
"Here we evaluate our model on the StackOverflow4423 dataset. "
"Sliding the slider will sample a specified number of samples from the StackOverflow4423 dataset and predict their sentiment labels. "
"Based on the prediction results, a label distribution chart and a confusion matrix will be plotted."
),
'zh': (
"这里是在 StackOverflow4423 数据集上评估我们的模型。"
"滑动 Slider,将会从 StackOverflow4423 数据集中抽样出指定数量的样本,预测其情感标签。"
"并根据预测结果绘制标签分布图和混淆矩阵。"
)
}
DEFAULT_LANG = 'en'
MAX_SAMPLES = 64
df = pd.read_csv('./SOF4423.csv')
def set_language(lang):
return DESCRIPTION[lang], PROMPT1[lang], PROMPT2[lang], PROMPT3[lang]
with gr.Blocks(title=TITLE) as demo:
with gr.Row():
with gr.Column():
gr.HTML(f"<H1>{TITLE}</H1>")
with gr.Column(min_width=160):
language_selector = gr.Radio(
['en', 'zh'], label="Select Language", value=DEFAULT_LANG,
interactive=True, show_label=False, container=False
)
description = gr.Markdown(DESCRIPTION[DEFAULT_LANG])
gr.HTML("<H2>Model Inference</H2>")
prompt1 = gr.Markdown(PROMPT1[DEFAULT_LANG])
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label='Input',
placeholder="Enter a positive or negative sentence here...")
with gr.Column():
senti_output = gr.Dataframe(type="pandas", value=[['😋', '😋', '😋']],
headers=list(MODEL_MAPPING.keys()), interactive=False)
text_input.submit(analysis, inputs=text_input, outputs=senti_output, show_progress='full')
prompt2 = gr.Markdown(PROMPT2[DEFAULT_LANG])
with gr.Row():
with gr.Column():
file_input = gr.File(label='File',
file_types=['.txt', '.csv'])
with gr.Column():
file_output = gr.File(label='Output')
file_input.upload(analyse_file, inputs=file_input, outputs=file_output)
gr.HTML("<H2>Model Evaluation</H2>")
prompt3 = gr.Markdown(PROMPT3[DEFAULT_LANG])
input_models = list(MODEL_MAPPING)
input_n_samples = gr.Slider(
minimum=4,
maximum=MAX_SAMPLES,
value=8,
step=4,
label='Number of samples'
)
with gr.Row():
with gr.Column():
bar_plot = gr.Plot(label='Predictions Frequency')
with gr.Column():
cm_plot = gr.Plot(label='Confusion Matrix')
with gr.Row():
dataframe = gr.Dataframe(type="pandas", wrap=True, headers=['Text', 'Label', 'Predict'])
input_n_samples.change(fn=classify, inputs=input_n_samples, outputs=[dataframe, bar_plot, cm_plot])
language_selector.change(fn=set_language, inputs=language_selector,
outputs=[description, prompt1, prompt2, prompt3])
demo.launch()