Update app.py
Browse files
app.py
CHANGED
|
@@ -1,200 +1,200 @@
|
|
| 1 |
-
import csv
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import pandas as pd
|
| 4 |
-
from sentiment_analyser import RandomAnalyser, RoBERTaAnalyser, ChatGPTAnalyser
|
| 5 |
-
import matplotlib.pyplot as plt
|
| 6 |
-
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
def plot_bar(value_counts):
|
| 10 |
-
fig, ax = plt.subplots(figsize=(6, 6))
|
| 11 |
-
value_counts.plot.barh(ax=ax)
|
| 12 |
-
ax.bar_label(ax.containers[0])
|
| 13 |
-
plt.title('Frequency of Predictions')
|
| 14 |
-
return fig
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
def plot_confusion_matrix(y_pred, y_true):
|
| 18 |
-
cm = confusion_matrix(y_true, y_pred, normalize='true')
|
| 19 |
-
fig, ax = plt.subplots(figsize=(6, 6))
|
| 20 |
-
labels = []
|
| 21 |
-
for label in SENTI_MAPPING.keys():
|
| 22 |
-
if (label in y_pred.values) or (label in y_true.values):
|
| 23 |
-
labels.append(label)
|
| 24 |
-
disp = ConfusionMatrixDisplay(confusion_matrix=cm,
|
| 25 |
-
display_labels=labels)
|
| 26 |
-
disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False)
|
| 27 |
-
plt.title("Normalized Confusion Matrix")
|
| 28 |
-
return fig
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
def classify(num: int):
|
| 32 |
-
samples_df = df.sample(num)
|
| 33 |
-
X = samples_df['Text'].tolist()
|
| 34 |
-
y = samples_df['Label']
|
| 35 |
-
roberta = MODEL_MAPPING[OUR_MODEL]
|
| 36 |
-
y_pred = pd.Series(roberta.predict(X), index=samples_df.index)
|
| 37 |
-
samples_df['Predict'] = y_pred
|
| 38 |
-
bar = plot_bar(y_pred.value_counts())
|
| 39 |
-
cm = plot_confusion_matrix(y_pred, y)
|
| 40 |
-
plt.close()
|
| 41 |
-
return samples_df, bar, cm
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def analysis(Text):
|
| 45 |
-
keys = []
|
| 46 |
-
values = []
|
| 47 |
-
for name, model in MODEL_MAPPING.items():
|
| 48 |
-
keys.append(name)
|
| 49 |
-
values.append(SENTI_MAPPING[model.predict([Text])[0]])
|
| 50 |
-
return pd.DataFrame([values], columns=keys)
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
def analyse_file(file):
|
| 54 |
-
output_name = 'output.csv'
|
| 55 |
-
with open(output_name, mode='w', newline='') as output:
|
| 56 |
-
writer = csv.writer(output)
|
| 57 |
-
header = ['Text', 'Label']
|
| 58 |
-
writer.writerow(header)
|
| 59 |
-
model = MODEL_MAPPING[OUR_MODEL]
|
| 60 |
-
with open(file.name) as f:
|
| 61 |
-
for line in f:
|
| 62 |
-
text = line[:-1]
|
| 63 |
-
sentiment = model.predict([text])
|
| 64 |
-
writer.writerow([text, sentiment[0]])
|
| 65 |
-
return output_name
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
MODEL_MAPPING = {
|
| 69 |
-
'Random': RandomAnalyser(),
|
| 70 |
-
'RoBERTa': RoBERTaAnalyser(),
|
| 71 |
-
'ChatGPT': RandomAnalyser(),
|
| 72 |
-
}
|
| 73 |
-
|
| 74 |
-
OUR_MODEL = 'RoBERTa'
|
| 75 |
-
|
| 76 |
-
SENTI_MAPPING = {
|
| 77 |
-
'negative': '😭',
|
| 78 |
-
'neutral': '😶',
|
| 79 |
-
'positive': '🥰'
|
| 80 |
-
}
|
| 81 |
-
|
| 82 |
-
TITLE = "Sentiment Analysis on Software Engineer Texts"
|
| 83 |
-
|
| 84 |
-
DESCRIPTION = {
|
| 85 |
-
'en': (
|
| 86 |
-
"This is the demo page for our model: "
|
| 87 |
-
"[Cloudy1225/stackoverflow-roberta-base-sentiment]"
|
| 88 |
-
"(https://huggingface.co/Cloudy1225/stackoverflow-roberta-base-sentiment)."
|
| 89 |
-
),
|
| 90 |
-
'zh': (
|
| 91 |
-
"这里是第16
|
| 92 |
-
"模型链接:[Cloudy1225/stackoverflow-roberta-base-sentiment]"
|
| 93 |
-
"(https://huggingface.co/Cloudy1225/stackoverflow-roberta-base-sentiment)."
|
| 94 |
-
)
|
| 95 |
-
}
|
| 96 |
-
|
| 97 |
-
PROMPT1 = {
|
| 98 |
-
'en': (
|
| 99 |
-
"Enter text in the left text box and press Enter, and the sentiment analysis results will be output on the right. "
|
| 100 |
-
"Here, we present three types of results, which come from random, our model, and ChatGPT."
|
| 101 |
-
),
|
| 102 |
-
'zh': (
|
| 103 |
-
"在左侧文本框中输入文本并按回车键,右侧将输出情感分析结果。"
|
| 104 |
-
"这里我们展示了三种结果,分别是随机结果、模型结果和 ChatGPT 结果。"
|
| 105 |
-
)
|
| 106 |
-
}
|
| 107 |
-
|
| 108 |
-
PROMPT2 = {
|
| 109 |
-
'en': (
|
| 110 |
-
"Upload a txt/csv file in the left file box, and the model will perform sentiment analysis on each line of the input text. "
|
| 111 |
-
"You can download the output file on the right. "
|
| 112 |
-
"The output file will be in CSV format with two columns: the original text, and the classification results."
|
| 113 |
-
),
|
| 114 |
-
'zh': (
|
| 115 |
-
"在左侧文件框中上传 txt/csv 文件,模型会对输入文本的每一行当作一个文本进行情感分析。"
|
| 116 |
-
"可以在右侧下载输出文件,输出文件为两列 csv 格式,第一列为原始文本,第二列为分类结果。"
|
| 117 |
-
)
|
| 118 |
-
}
|
| 119 |
-
|
| 120 |
-
PROMPT3 = {
|
| 121 |
-
'en': (
|
| 122 |
-
"Here we evaluate our model on the StackOverflow4423 dataset. "
|
| 123 |
-
"Sliding the slider will sample a specified number of samples from the StackOverflow4423 dataset and predict their sentiment labels. "
|
| 124 |
-
"Based on the prediction results, a label distribution chart and a confusion matrix will be plotted."
|
| 125 |
-
),
|
| 126 |
-
'zh': (
|
| 127 |
-
"这里是在 StackOverflow4423 数据集上评估我们的模型。"
|
| 128 |
-
"滑动 Slider,将会从 StackOverflow4423 数据集中抽样出指定数量的样本,预测其情感标签。"
|
| 129 |
-
"并根据预测结果绘制标签分布图和混淆矩阵。"
|
| 130 |
-
)
|
| 131 |
-
}
|
| 132 |
-
|
| 133 |
-
DEFAULT_LANG = 'en'
|
| 134 |
-
|
| 135 |
-
MAX_SAMPLES = 64
|
| 136 |
-
|
| 137 |
-
df = pd.read_csv('./SOF4423.csv')
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
def set_language(lang):
|
| 141 |
-
return DESCRIPTION[lang], PROMPT1[lang], PROMPT2[lang], PROMPT3[lang]
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
with gr.Blocks(title=TITLE) as demo:
|
| 145 |
-
with gr.Row():
|
| 146 |
-
with gr.Column():
|
| 147 |
-
gr.HTML(f"<H1>{TITLE}</H1>")
|
| 148 |
-
with gr.Column():
|
| 149 |
-
language_selector = gr.Radio(
|
| 150 |
-
['en', 'zh'], label="Select Language", value=DEFAULT_LANG,
|
| 151 |
-
interactive=True, show_label=False, container=False
|
| 152 |
-
)
|
| 153 |
-
|
| 154 |
-
description = gr.Markdown(DESCRIPTION[DEFAULT_LANG])
|
| 155 |
-
gr.HTML("<H2>Model Inference</H2>")
|
| 156 |
-
prompt1 = gr.Markdown(PROMPT1[DEFAULT_LANG])
|
| 157 |
-
with gr.Row():
|
| 158 |
-
with gr.Column():
|
| 159 |
-
text_input = gr.Textbox(label='Input',
|
| 160 |
-
placeholder="Enter a positive or negative sentence here...")
|
| 161 |
-
with gr.Column():
|
| 162 |
-
senti_output = gr.Dataframe(type="pandas", value=[['😋', '😋', '😋']],
|
| 163 |
-
headers=list(MODEL_MAPPING.keys()), interactive=False)
|
| 164 |
-
text_input.submit(analysis, inputs=text_input, outputs=senti_output, show_progress='full')
|
| 165 |
-
|
| 166 |
-
prompt2 = gr.Markdown(PROMPT2[DEFAULT_LANG])
|
| 167 |
-
with gr.Row():
|
| 168 |
-
with gr.Column():
|
| 169 |
-
file_input = gr.File(label='File',
|
| 170 |
-
file_types=['.txt', '.csv'])
|
| 171 |
-
with gr.Column():
|
| 172 |
-
file_output = gr.File(label='Output')
|
| 173 |
-
file_input.upload(analyse_file, inputs=file_input, outputs=file_output)
|
| 174 |
-
|
| 175 |
-
gr.HTML("<H2>Model Evaluation</H2>")
|
| 176 |
-
prompt3 = gr.Markdown(PROMPT3[DEFAULT_LANG])
|
| 177 |
-
input_models = list(MODEL_MAPPING)
|
| 178 |
-
input_n_samples = gr.Slider(
|
| 179 |
-
minimum=4,
|
| 180 |
-
maximum=MAX_SAMPLES,
|
| 181 |
-
value=8,
|
| 182 |
-
step=4,
|
| 183 |
-
label='Number of samples'
|
| 184 |
-
)
|
| 185 |
-
|
| 186 |
-
with gr.Row():
|
| 187 |
-
with gr.Column():
|
| 188 |
-
bar_plot = gr.Plot(label='Predictions Frequency')
|
| 189 |
-
with gr.Column():
|
| 190 |
-
cm_plot = gr.Plot(label='Confusion Matrix')
|
| 191 |
-
|
| 192 |
-
with gr.Row():
|
| 193 |
-
dataframe = gr.Dataframe(type="pandas", wrap=True, headers=['Text', 'Label', 'Predict'])
|
| 194 |
-
|
| 195 |
-
input_n_samples.change(fn=classify, inputs=input_n_samples, outputs=[dataframe, bar_plot, cm_plot])
|
| 196 |
-
|
| 197 |
-
language_selector.change(fn=set_language, inputs=language_selector,
|
| 198 |
-
outputs=[description, prompt1, prompt2, prompt3])
|
| 199 |
-
|
| 200 |
-
demo.launch()
|
|
|
|
| 1 |
+
import csv
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from sentiment_analyser import RandomAnalyser, RoBERTaAnalyser, ChatGPTAnalyser
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def plot_bar(value_counts):
|
| 10 |
+
fig, ax = plt.subplots(figsize=(6, 6))
|
| 11 |
+
value_counts.plot.barh(ax=ax)
|
| 12 |
+
ax.bar_label(ax.containers[0])
|
| 13 |
+
plt.title('Frequency of Predictions')
|
| 14 |
+
return fig
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def plot_confusion_matrix(y_pred, y_true):
|
| 18 |
+
cm = confusion_matrix(y_true, y_pred, normalize='true')
|
| 19 |
+
fig, ax = plt.subplots(figsize=(6, 6))
|
| 20 |
+
labels = []
|
| 21 |
+
for label in SENTI_MAPPING.keys():
|
| 22 |
+
if (label in y_pred.values) or (label in y_true.values):
|
| 23 |
+
labels.append(label)
|
| 24 |
+
disp = ConfusionMatrixDisplay(confusion_matrix=cm,
|
| 25 |
+
display_labels=labels)
|
| 26 |
+
disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False)
|
| 27 |
+
plt.title("Normalized Confusion Matrix")
|
| 28 |
+
return fig
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def classify(num: int):
|
| 32 |
+
samples_df = df.sample(num)
|
| 33 |
+
X = samples_df['Text'].tolist()
|
| 34 |
+
y = samples_df['Label']
|
| 35 |
+
roberta = MODEL_MAPPING[OUR_MODEL]
|
| 36 |
+
y_pred = pd.Series(roberta.predict(X), index=samples_df.index)
|
| 37 |
+
samples_df['Predict'] = y_pred
|
| 38 |
+
bar = plot_bar(y_pred.value_counts())
|
| 39 |
+
cm = plot_confusion_matrix(y_pred, y)
|
| 40 |
+
plt.close()
|
| 41 |
+
return samples_df, bar, cm
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def analysis(Text):
|
| 45 |
+
keys = []
|
| 46 |
+
values = []
|
| 47 |
+
for name, model in MODEL_MAPPING.items():
|
| 48 |
+
keys.append(name)
|
| 49 |
+
values.append(SENTI_MAPPING[model.predict([Text])[0]])
|
| 50 |
+
return pd.DataFrame([values], columns=keys)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def analyse_file(file):
|
| 54 |
+
output_name = 'output.csv'
|
| 55 |
+
with open(output_name, mode='w', newline='') as output:
|
| 56 |
+
writer = csv.writer(output)
|
| 57 |
+
header = ['Text', 'Label']
|
| 58 |
+
writer.writerow(header)
|
| 59 |
+
model = MODEL_MAPPING[OUR_MODEL]
|
| 60 |
+
with open(file.name) as f:
|
| 61 |
+
for line in f:
|
| 62 |
+
text = line[:-1]
|
| 63 |
+
sentiment = model.predict([text])
|
| 64 |
+
writer.writerow([text, sentiment[0]])
|
| 65 |
+
return output_name
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
MODEL_MAPPING = {
|
| 69 |
+
'Random': RandomAnalyser(),
|
| 70 |
+
'RoBERTa': RoBERTaAnalyser(),
|
| 71 |
+
'ChatGPT': RandomAnalyser(),
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
OUR_MODEL = 'RoBERTa'
|
| 75 |
+
|
| 76 |
+
SENTI_MAPPING = {
|
| 77 |
+
'negative': '😭',
|
| 78 |
+
'neutral': '😶',
|
| 79 |
+
'positive': '🥰'
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
TITLE = "Sentiment Analysis on Software Engineer Texts"
|
| 83 |
+
|
| 84 |
+
DESCRIPTION = {
|
| 85 |
+
'en': (
|
| 86 |
+
"This is the demo page for our model: "
|
| 87 |
+
"[Cloudy1225/stackoverflow-roberta-base-sentiment]"
|
| 88 |
+
"(https://huggingface.co/Cloudy1225/stackoverflow-roberta-base-sentiment)."
|
| 89 |
+
),
|
| 90 |
+
'zh': (
|
| 91 |
+
"这里是第16组“睿王和他的五个小跟班”软工三��代三模型演示页面。"
|
| 92 |
+
"模型链接:[Cloudy1225/stackoverflow-roberta-base-sentiment]"
|
| 93 |
+
"(https://huggingface.co/Cloudy1225/stackoverflow-roberta-base-sentiment)."
|
| 94 |
+
)
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
PROMPT1 = {
|
| 98 |
+
'en': (
|
| 99 |
+
"Enter text in the left text box and press Enter, and the sentiment analysis results will be output on the right. "
|
| 100 |
+
"Here, we present three types of results, which come from random, our model, and ChatGPT."
|
| 101 |
+
),
|
| 102 |
+
'zh': (
|
| 103 |
+
"在左侧文本框中输入文本并按回车键,右侧将输出情感分析结果。"
|
| 104 |
+
"这里我们展示了三种结果,分别是随机结果、模型结果和 ChatGPT 结果。"
|
| 105 |
+
)
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
PROMPT2 = {
|
| 109 |
+
'en': (
|
| 110 |
+
"Upload a txt/csv file in the left file box, and the model will perform sentiment analysis on each line of the input text. "
|
| 111 |
+
"You can download the output file on the right. "
|
| 112 |
+
"The output file will be in CSV format with two columns: the original text, and the classification results."
|
| 113 |
+
),
|
| 114 |
+
'zh': (
|
| 115 |
+
"在左侧文件框中上传 txt/csv 文件,模型会对输入文本的每一行当作一个文本进行情感分析。"
|
| 116 |
+
"可以在右侧下载输出文件,输出文件为两列 csv 格式,第一列为原始文本,第二列为分类结果。"
|
| 117 |
+
)
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
PROMPT3 = {
|
| 121 |
+
'en': (
|
| 122 |
+
"Here we evaluate our model on the StackOverflow4423 dataset. "
|
| 123 |
+
"Sliding the slider will sample a specified number of samples from the StackOverflow4423 dataset and predict their sentiment labels. "
|
| 124 |
+
"Based on the prediction results, a label distribution chart and a confusion matrix will be plotted."
|
| 125 |
+
),
|
| 126 |
+
'zh': (
|
| 127 |
+
"这里是在 StackOverflow4423 数据集上评估我们的模型。"
|
| 128 |
+
"滑动 Slider,将会从 StackOverflow4423 数据集中抽样出指定数量的样本,预测其情感标签。"
|
| 129 |
+
"并根据预测结果绘制标签分布图和混淆矩阵。"
|
| 130 |
+
)
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
DEFAULT_LANG = 'en'
|
| 134 |
+
|
| 135 |
+
MAX_SAMPLES = 64
|
| 136 |
+
|
| 137 |
+
df = pd.read_csv('./SOF4423.csv')
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def set_language(lang):
|
| 141 |
+
return DESCRIPTION[lang], PROMPT1[lang], PROMPT2[lang], PROMPT3[lang]
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
with gr.Blocks(title=TITLE) as demo:
|
| 145 |
+
with gr.Row():
|
| 146 |
+
with gr.Column():
|
| 147 |
+
gr.HTML(f"<H1>{TITLE}</H1>")
|
| 148 |
+
with gr.Column(min_width=160):
|
| 149 |
+
language_selector = gr.Radio(
|
| 150 |
+
['en', 'zh'], label="Select Language", value=DEFAULT_LANG,
|
| 151 |
+
interactive=True, show_label=False, container=False
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
description = gr.Markdown(DESCRIPTION[DEFAULT_LANG])
|
| 155 |
+
gr.HTML("<H2>Model Inference</H2>")
|
| 156 |
+
prompt1 = gr.Markdown(PROMPT1[DEFAULT_LANG])
|
| 157 |
+
with gr.Row():
|
| 158 |
+
with gr.Column():
|
| 159 |
+
text_input = gr.Textbox(label='Input',
|
| 160 |
+
placeholder="Enter a positive or negative sentence here...")
|
| 161 |
+
with gr.Column():
|
| 162 |
+
senti_output = gr.Dataframe(type="pandas", value=[['😋', '😋', '😋']],
|
| 163 |
+
headers=list(MODEL_MAPPING.keys()), interactive=False)
|
| 164 |
+
text_input.submit(analysis, inputs=text_input, outputs=senti_output, show_progress='full')
|
| 165 |
+
|
| 166 |
+
prompt2 = gr.Markdown(PROMPT2[DEFAULT_LANG])
|
| 167 |
+
with gr.Row():
|
| 168 |
+
with gr.Column():
|
| 169 |
+
file_input = gr.File(label='File',
|
| 170 |
+
file_types=['.txt', '.csv'])
|
| 171 |
+
with gr.Column():
|
| 172 |
+
file_output = gr.File(label='Output')
|
| 173 |
+
file_input.upload(analyse_file, inputs=file_input, outputs=file_output)
|
| 174 |
+
|
| 175 |
+
gr.HTML("<H2>Model Evaluation</H2>")
|
| 176 |
+
prompt3 = gr.Markdown(PROMPT3[DEFAULT_LANG])
|
| 177 |
+
input_models = list(MODEL_MAPPING)
|
| 178 |
+
input_n_samples = gr.Slider(
|
| 179 |
+
minimum=4,
|
| 180 |
+
maximum=MAX_SAMPLES,
|
| 181 |
+
value=8,
|
| 182 |
+
step=4,
|
| 183 |
+
label='Number of samples'
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
with gr.Row():
|
| 187 |
+
with gr.Column():
|
| 188 |
+
bar_plot = gr.Plot(label='Predictions Frequency')
|
| 189 |
+
with gr.Column():
|
| 190 |
+
cm_plot = gr.Plot(label='Confusion Matrix')
|
| 191 |
+
|
| 192 |
+
with gr.Row():
|
| 193 |
+
dataframe = gr.Dataframe(type="pandas", wrap=True, headers=['Text', 'Label', 'Predict'])
|
| 194 |
+
|
| 195 |
+
input_n_samples.change(fn=classify, inputs=input_n_samples, outputs=[dataframe, bar_plot, cm_plot])
|
| 196 |
+
|
| 197 |
+
language_selector.change(fn=set_language, inputs=language_selector,
|
| 198 |
+
outputs=[description, prompt1, prompt2, prompt3])
|
| 199 |
+
|
| 200 |
+
demo.launch()
|