Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import argparse | |
from tempfile import NamedTemporaryFile | |
from langchain.chains import create_retrieval_chain | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_openai import ChatOpenAI | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_community.vectorstores import FAISS | |
from langchain_openai import OpenAIEmbeddings | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
def process_pdf(api_key, pdf_path): | |
os.environ["OPENAI_API_KEY"] = api_key | |
questions_path = "./Prompts/summary_tool_questions.md" | |
prompt_path = "./Prompts/summary_tool_system_prompt.md" | |
with open(pdf_path, "rb") as file: | |
with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf: | |
temp_pdf.write(file.read()) | |
temp_pdf_path = temp_pdf.name | |
loader = PyPDFLoader(temp_pdf_path) | |
docs = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=500) | |
splits = text_splitter.split_documents(docs) | |
vectorstore = FAISS.from_documents( | |
documents=splits, embedding=OpenAIEmbeddings(model="text-embedding-3-large") | |
) | |
retriever = vectorstore.as_retriever(search_kwargs={"k": 10}) | |
if os.path.exists(prompt_path): | |
with open(prompt_path, "r") as file: | |
system_prompt = file.read() | |
else: | |
raise FileNotFoundError(f"The specified file was not found: {prompt_path}") | |
prompt = ChatPromptTemplate.from_messages( | |
[ | |
("system", system_prompt), | |
("human", "{input}"), | |
] | |
) | |
llm = ChatOpenAI(model="gpt-4o") | |
question_answer_chain = create_stuff_documents_chain(llm, prompt, document_variable_name="context") | |
rag_chain = create_retrieval_chain(retriever, question_answer_chain) | |
if os.path.exists(questions_path): | |
with open(questions_path, "r") as file: | |
questions = [line.strip() for line in file.readlines() if line.strip()] | |
else: | |
raise FileNotFoundError(f"The specified file was not found: {questions_path}") | |
qa_results = [] | |
for question in questions: | |
result = rag_chain.invoke({"input": question}) | |
answer = result["answer"] | |
qa_text = f"### Question: {question}\n**Answer:**\n{answer}\n" | |
qa_results.append(qa_text) | |
os.remove(temp_pdf_path) | |
return qa_results | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Generate a summary for a single PDF.") | |
parser.add_argument("api_key", type=str, help="OpenAI API Key") | |
parser.add_argument("pdf_path", type=str, help="Path to the PDF file") | |
args = parser.parse_args() | |
try: | |
results = process_pdf(args.api_key, args.pdf_path) | |
markdown_text = "\n".join(results) | |
# Define and create the output directory if it doesn't exist | |
output_folder = "CAPS_Summaries" | |
os.makedirs(output_folder, exist_ok=True) | |
# Save the results to a Markdown file | |
base_name = os.path.splitext(os.path.basename(args.pdf_path))[0] | |
output_file_path = os.path.join(output_folder, f"{base_name}_Summary.md") | |
with open(output_file_path, "w") as output_file: | |
output_file.write(markdown_text) | |
print(f"Summary saved to {output_file_path}") | |
except Exception as e: | |
print(f"An error occurred: {e}") | |