SB-PoC / service /ocr_service.py
Chirapath's picture
Upload 3 files
1628024 verified
#!/usr/bin/env python3
"""
OCR Backend API with Azure Document Intelligence - Cleaned and Optimized
Supports file uploads, URL processing, and web scraping fallback
"""
import os
import io
import requests
import numpy as np
import logging
from typing import Optional, List, Dict, Any
from urllib.parse import urlparse, urljoin
from pathlib import Path
import mimetypes
from fastapi import FastAPI, File, UploadFile, HTTPException, Form
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, HttpUrl
import uvicorn
# Import unified configuration
try:
from configs import get_config
config = get_config().ocr
print("βœ… Using unified configuration")
except ImportError:
print("⚠️ Unified config not available, using fallback configuration")
from dotenv import load_dotenv
load_dotenv()
class FallbackConfig:
HOST = os.getenv("HOST", "0.0.0.0")
PORT = int(os.getenv("OCR_PORT", "8400"))
DEBUG = os.getenv("DEBUG", "True").lower() == "true"
# Azure Document Intelligence configuration
AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT = os.getenv("AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT", "")
AZURE_DOCUMENT_INTELLIGENCE_KEY = os.getenv("AZURE_DOCUMENT_INTELLIGENCE_KEY", "")
# Web scraping configuration
MAX_IMAGES_PER_PAGE = int(os.getenv("MAX_IMAGES_PER_PAGE", "10"))
REQUEST_TIMEOUT = int(os.getenv("REQUEST_TIMEOUT", "30"))
USER_AGENT = os.getenv("USER_AGENT", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36")
# File size limits
MAX_FILE_SIZE = 50 * 1024 * 1024 # 50MB
config = FallbackConfig()
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import AnalyzeDocumentRequest
from azure.core.exceptions import HttpResponseError
from bs4 import BeautifulSoup
from PIL import Image
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="OCR Backend API",
description="OCR service with Azure Document Intelligence, supporting file uploads, URLs, and web scraping",
version="2.0.0",
debug=config.DEBUG
)
# CORS configuration
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Pydantic models
class URLRequest(BaseModel):
url: HttpUrl
extract_images: bool = True
class OCRResponse(BaseModel):
success: bool
content: str
pages: List[Dict[str, Any]]
source_type: str # 'file_upload', 'direct_url', 'web_scraped'
source_url: Optional[str] = None
error: Optional[str] = None
class WebScrapingResult(BaseModel):
text_content: str
images_found: List[str]
ocr_results: List[Dict[str, Any]]
# Utility functions
def format_bounding_box(bounding_box):
"""Format bounding box coordinates for display"""
if not bounding_box:
return "N/A"
reshaped_bounding_box = np.array(bounding_box).reshape(-1, 2)
return ", ".join(["[{}, {}]".format(x, y) for x, y in reshaped_bounding_box])
def is_supported_file_type(content_type: str, filename: str = "") -> bool:
"""Check if the file type is supported for OCR"""
supported_types = {
'application/pdf',
'image/jpeg',
'image/jpg',
'image/png',
'image/tiff',
'image/bmp',
'image/gif'
}
if content_type and content_type.lower() in supported_types:
return True
# Check by file extension if content type is unclear
if filename:
supported_extensions = {'.pdf', '.jpg', '.jpeg', '.png', '.tiff', '.tif', '.bmp', '.gif'}
file_ext = Path(filename).suffix.lower()
return file_ext in supported_extensions
return False
def get_document_intelligence_client():
"""Initialize Azure Document Intelligence client"""
if (config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT == "" or
config.AZURE_DOCUMENT_INTELLIGENCE_KEY == "" or
config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT == "YOUR_FORM_RECOGNIZER_ENDPOINT" or
config.AZURE_DOCUMENT_INTELLIGENCE_KEY == "YOUR_FORM_RECOGNIZER_KEY"):
raise HTTPException(
status_code=500,
detail="Azure Document Intelligence credentials not configured"
)
return DocumentIntelligenceClient(
endpoint=config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT,
credential=AzureKeyCredential(config.AZURE_DOCUMENT_INTELLIGENCE_KEY)
)
async def process_ocr_from_url(url: str) -> Dict[str, Any]:
"""Process OCR from a direct URL"""
try:
client = get_document_intelligence_client()
logger.info(f"Processing OCR from URL: {url}")
poller = client.begin_analyze_document(
"prebuilt-read",
AnalyzeDocumentRequest(url_source=url)
)
result = poller.result()
return format_ocr_result(result, "direct_url", url)
except HttpResponseError as e:
logger.error(f"Azure OCR error for URL {url}: {e}")
raise HTTPException(status_code=400, detail=f"OCR processing failed: {e}")
except Exception as e:
logger.error(f"Unexpected error processing URL {url}: {e}")
raise HTTPException(status_code=500, detail=f"Unexpected error: {e}")
async def process_ocr_from_bytes(file_bytes: bytes, filename: str = "") -> Dict[str, Any]:
"""Process OCR from file bytes"""
try:
client = get_document_intelligence_client()
logger.info(f"Processing OCR from file: {filename} ({len(file_bytes)} bytes)")
poller = client.begin_analyze_document(
"prebuilt-read",
AnalyzeDocumentRequest(bytes_source=file_bytes)
)
result = poller.result()
return format_ocr_result(result, "file_upload", filename)
except HttpResponseError as e:
logger.error(f"Azure OCR error for file {filename}: {e}")
raise HTTPException(status_code=400, detail=f"OCR processing failed: {e}")
except Exception as e:
logger.error(f"Unexpected error processing file {filename}: {e}")
raise HTTPException(status_code=500, detail=f"Unexpected error: {e}")
def format_ocr_result(result, source_type: str, source_identifier: str = "") -> Dict[str, Any]:
"""Format Azure Document Intelligence result into standardized response"""
pages_data = []
for page in result.pages:
page_data = {
"page_number": page.page_number,
"width": page.width,
"height": page.height,
"unit": page.unit,
"lines": [],
"words": []
}
# Process lines
if hasattr(page, 'lines') and page.lines:
for line_idx, line in enumerate(page.lines):
page_data["lines"].append({
"line_number": line_idx,
"content": line.content,
"bounding_box": format_bounding_box(line.polygon) if hasattr(line, 'polygon') else "N/A"
})
# Process words
if hasattr(page, 'words') and page.words:
for word in page.words:
page_data["words"].append({
"content": word.content,
"confidence": word.confidence if hasattr(word, 'confidence') else None
})
pages_data.append(page_data)
# Check for handwritten content
handwritten_detected = False
if hasattr(result, 'styles') and result.styles:
for style in result.styles:
if hasattr(style, 'is_handwritten') and style.is_handwritten:
handwritten_detected = True
break
return {
"success": True,
"content": result.content if hasattr(result, 'content') else "",
"pages": pages_data,
"source_type": source_type,
"source_url": source_identifier if source_type == "direct_url" else None,
"handwritten_detected": handwritten_detected,
"error": None
}
async def scrape_web_content(url: str, extract_images: bool = True) -> WebScrapingResult:
"""Scrape web content and extract text and images"""
try:
headers = {
'User-Agent': config.USER_AGENT
}
logger.info(f"Scraping web content from: {url}")
response = requests.get(url, headers=headers, timeout=config.REQUEST_TIMEOUT)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
# Extract text content
text_content = soup.get_text(separator=' ', strip=True)
images_found = []
ocr_results = []
if extract_images:
# Find all images
img_tags = soup.find_all('img')
for img in img_tags[:config.MAX_IMAGES_PER_PAGE]:
img_src = img.get('src')
if img_src:
# Make absolute URL
img_url = urljoin(url, img_src)
images_found.append(img_url)
# Try to process image with OCR
try:
# Check if image URL is accessible and is an image
img_response = requests.head(img_url, headers=headers, timeout=10)
content_type = img_response.headers.get('content-type', '')
if is_supported_file_type(content_type):
ocr_result = await process_ocr_from_url(img_url)
if ocr_result['content'].strip(): # Only add if there's actual text
ocr_results.append({
"image_url": img_url,
"ocr_content": ocr_result['content'],
"pages": ocr_result['pages']
})
except Exception as e:
logger.warning(f"Failed to process image {img_url}: {e}")
continue
return WebScrapingResult(
text_content=text_content,
images_found=images_found,
ocr_results=ocr_results
)
except requests.RequestException as e:
logger.error(f"Failed to scrape URL {url}: {e}")
raise HTTPException(status_code=400, detail=f"Failed to scrape URL: {e}")
except Exception as e:
logger.error(f"Unexpected error scraping URL {url}: {e}")
raise HTTPException(status_code=500, detail=f"Unexpected error during web scraping: {e}")
def check_url_is_direct_file(url: str) -> tuple[bool, str]:
"""Check if URL points directly to a file"""
try:
headers = {
'User-Agent': config.USER_AGENT
}
response = requests.head(url, headers=headers, timeout=10, allow_redirects=True)
content_type = response.headers.get('content-type', '').lower()
# Check content disposition for filename
content_disposition = response.headers.get('content-disposition', '')
filename = ""
if 'filename=' in content_disposition:
filename = content_disposition.split('filename=')[1].strip('"')
# Parse URL for filename
if not filename:
parsed_url = urlparse(url)
filename = Path(parsed_url.path).name
is_file = is_supported_file_type(content_type, filename)
return is_file, content_type
except Exception as e:
logger.warning(f"Failed to check URL {url}: {e}")
return False, ""
# API Endpoints
@app.get("/")
async def root():
azure_di_available = bool(
config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT and
config.AZURE_DOCUMENT_INTELLIGENCE_KEY and
config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT != "YOUR_FORM_RECOGNIZER_ENDPOINT" and
config.AZURE_DOCUMENT_INTELLIGENCE_KEY != "YOUR_FORM_RECOGNIZER_KEY"
)
return {
"message": "OCR Backend API",
"version": "2.0.0",
"status": "operational",
"features": {
"file_upload": True,
"url_processing": True,
"web_scraping": True,
"azure_document_intelligence": azure_di_available,
"supported_formats": ["PDF", "JPEG", "PNG", "TIFF", "BMP", "GIF"]
},
"limits": {
"max_file_size_mb": config.MAX_FILE_SIZE / (1024 * 1024),
"max_images_per_page": config.MAX_IMAGES_PER_PAGE,
"request_timeout_seconds": config.REQUEST_TIMEOUT
}
}
@app.get("/health")
async def health_check():
azure_di_available = bool(
config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT and
config.AZURE_DOCUMENT_INTELLIGENCE_KEY and
config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT != "YOUR_FORM_RECOGNIZER_ENDPOINT" and
config.AZURE_DOCUMENT_INTELLIGENCE_KEY != "YOUR_FORM_RECOGNIZER_KEY"
)
# Test Azure DI connection if configured
azure_di_status = "not_configured"
if azure_di_available:
try:
# Quick test of Azure DI client initialization
get_document_intelligence_client()
azure_di_status = "configured"
except Exception as e:
azure_di_status = f"error: {str(e)[:100]}"
return {
"status": "healthy",
"service": "OCR Backend API",
"version": "2.0.0",
"azure_document_intelligence": azure_di_status,
"configuration": {
"max_file_size_mb": config.MAX_FILE_SIZE / (1024 * 1024),
"max_images_per_page": config.MAX_IMAGES_PER_PAGE,
"request_timeout": config.REQUEST_TIMEOUT,
"endpoint_configured": bool(config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT),
"key_configured": bool(config.AZURE_DOCUMENT_INTELLIGENCE_KEY)
}
}
@app.post("/ocr/upload", response_model=OCRResponse)
async def ocr_upload_file(file: UploadFile = File(...)):
"""Upload a file for OCR processing"""
# Validate file type
if not is_supported_file_type(file.content_type, file.filename):
raise HTTPException(
status_code=400,
detail=f"Unsupported file type: {file.content_type}. Supported types: PDF, JPEG, PNG, TIFF, BMP, GIF"
)
try:
# Read file content
file_bytes = await file.read()
# Check file size
if len(file_bytes) > config.MAX_FILE_SIZE:
raise HTTPException(
status_code=400,
detail=f"File too large. Maximum size: {config.MAX_FILE_SIZE / (1024*1024):.0f}MB"
)
# Process OCR
result = await process_ocr_from_bytes(file_bytes, file.filename)
return OCRResponse(**result)
except HTTPException:
raise
except Exception as e:
logger.error(f"Unexpected error processing uploaded file: {e}")
raise HTTPException(status_code=500, detail=f"Unexpected error: {e}")
@app.post("/ocr/url", response_model=OCRResponse)
async def ocr_from_url(request: URLRequest):
"""Process OCR from URL - either direct file or web scraping"""
url_str = str(request.url)
# Check if URL points to a direct file
is_direct_file, content_type = check_url_is_direct_file(url_str)
if is_direct_file:
# Process as direct file URL
try:
result = await process_ocr_from_url(url_str)
return OCRResponse(**result)
except HTTPException:
raise
except Exception as e:
logger.error(f"Failed to process direct file URL: {e}")
# Fall back to web scraping
pass
# Web scraping approach
try:
scraping_result = await scrape_web_content(url_str, request.extract_images)
# Combine text content and OCR results
combined_content = scraping_result.text_content
if scraping_result.ocr_results:
ocr_content = "\n\n--- OCR from Images ---\n"
for ocr_result in scraping_result.ocr_results:
ocr_content += f"\nImage: {ocr_result['image_url']}\n"
ocr_content += ocr_result['ocr_content'] + "\n"
combined_content += ocr_content
# Format response
pages_data = [{
"page_number": 1,
"content_type": "web_scraped",
"text_content": scraping_result.text_content,
"images_found": len(scraping_result.images_found),
"ocr_results": len(scraping_result.ocr_results)
}]
return OCRResponse(
success=True,
content=combined_content,
pages=pages_data,
source_type="web_scraped",
source_url=url_str,
error=None
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Failed to process URL {url_str}: {e}")
return OCRResponse(
success=False,
content="",
pages=[],
source_type="web_scraped",
source_url=url_str,
error=str(e)
)
@app.post("/ocr/analyze")
async def analyze_document(
file: Optional[UploadFile] = File(None),
url: Optional[str] = Form(None),
extract_images: bool = Form(True)
):
"""Unified endpoint for document analysis - accepts either file upload or URL"""
if not file and not url:
raise HTTPException(status_code=400, detail="Either file or URL must be provided")
if file and url:
raise HTTPException(status_code=400, detail="Provide either file or URL, not both")
try:
if file:
# Process uploaded file
if not is_supported_file_type(file.content_type, file.filename):
raise HTTPException(
status_code=400,
detail=f"Unsupported file type: {file.content_type}"
)
file_bytes = await file.read()
# Check file size
if len(file_bytes) > config.MAX_FILE_SIZE:
raise HTTPException(
status_code=400,
detail=f"File too large. Maximum size: {config.MAX_FILE_SIZE / (1024*1024):.0f}MB"
)
result = await process_ocr_from_bytes(file_bytes, file.filename)
return result
else:
# Process URL
url_request = URLRequest(url=url, extract_images=extract_images)
response = await ocr_from_url(url_request)
return response.dict()
except HTTPException:
raise
except Exception as e:
logger.error(f"Unexpected error in analyze_document: {e}")
raise HTTPException(status_code=500, detail=f"Unexpected error: {e}")
# Additional utility endpoints
@app.get("/supported-formats")
async def get_supported_formats():
"""Get list of supported file formats"""
return {
"supported_formats": {
"documents": ["PDF"],
"images": ["JPEG", "JPG", "PNG", "TIFF", "TIF", "BMP", "GIF"]
},
"content_types": [
"application/pdf",
"image/jpeg",
"image/jpg",
"image/png",
"image/tiff",
"image/bmp",
"image/gif"
],
"max_file_size_mb": config.MAX_FILE_SIZE / (1024 * 1024),
"max_images_per_page": config.MAX_IMAGES_PER_PAGE
}
@app.get("/config")
async def get_configuration():
"""Get current service configuration (for debugging)"""
return {
"service": "OCR Backend API",
"version": "2.0.0",
"configuration": {
"host": config.HOST,
"port": config.PORT,
"debug": config.DEBUG,
"max_file_size_mb": config.MAX_FILE_SIZE / (1024 * 1024),
"max_images_per_page": config.MAX_IMAGES_PER_PAGE,
"request_timeout": config.REQUEST_TIMEOUT,
"azure_di_configured": bool(
config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT and
config.AZURE_DOCUMENT_INTELLIGENCE_KEY
)
}
}
if __name__ == "__main__":
print("πŸ”§ Loading OCR service configuration...")
print(f"🌐 Will start server on {config.HOST}:{config.PORT}")
print(f"πŸ“„ Azure Document Intelligence: {'βœ… Configured' if config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT else '❌ Not configured'}")
print(f"πŸ“Š Max file size: {config.MAX_FILE_SIZE / (1024*1024):.0f}MB")
uvicorn.run(
"ocr_service:app",
host=config.HOST,
port=config.PORT,
reload=config.DEBUG,
log_level="info"
)