|
""" |
|
Defines helper methods useful for loading and caching Interface examples. |
|
""" |
|
from __future__ import annotations |
|
|
|
import ast |
|
import csv |
|
import inspect |
|
import os |
|
import subprocess |
|
import tempfile |
|
import threading |
|
import warnings |
|
from pathlib import Path |
|
from typing import TYPE_CHECKING, Any, Callable, Iterable, List, Optional, Tuple |
|
|
|
import matplotlib |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import PIL |
|
|
|
from gradio import processing_utils, routes, utils |
|
from gradio.context import Context |
|
from gradio.documentation import document, set_documentation_group |
|
from gradio.flagging import CSVLogger |
|
|
|
if TYPE_CHECKING: |
|
from gradio.components import IOComponent |
|
|
|
CACHED_FOLDER = "gradio_cached_examples" |
|
LOG_FILE = "log.csv" |
|
|
|
set_documentation_group("helpers") |
|
|
|
|
|
def create_examples( |
|
examples: List[Any] | List[List[Any]] | str, |
|
inputs: IOComponent | List[IOComponent], |
|
outputs: IOComponent | List[IOComponent] | None = None, |
|
fn: Callable | None = None, |
|
cache_examples: bool = False, |
|
examples_per_page: int = 10, |
|
_api_mode: bool = False, |
|
label: str | None = None, |
|
elem_id: str | None = None, |
|
run_on_click: bool = False, |
|
preprocess: bool = True, |
|
postprocess: bool = True, |
|
batch: bool = False, |
|
): |
|
"""Top-level synchronous function that creates Examples. Provided for backwards compatibility, i.e. so that gr.Examples(...) can be used to create the Examples component.""" |
|
examples_obj = Examples( |
|
examples=examples, |
|
inputs=inputs, |
|
outputs=outputs, |
|
fn=fn, |
|
cache_examples=cache_examples, |
|
examples_per_page=examples_per_page, |
|
_api_mode=_api_mode, |
|
label=label, |
|
elem_id=elem_id, |
|
run_on_click=run_on_click, |
|
preprocess=preprocess, |
|
postprocess=postprocess, |
|
batch=batch, |
|
_initiated_directly=False, |
|
) |
|
utils.synchronize_async(examples_obj.create) |
|
return examples_obj |
|
|
|
|
|
@document() |
|
class Examples: |
|
""" |
|
This class is a wrapper over the Dataset component and can be used to create Examples |
|
for Blocks / Interfaces. Populates the Dataset component with examples and |
|
assigns event listener so that clicking on an example populates the input/output |
|
components. Optionally handles example caching for fast inference. |
|
|
|
Demos: blocks_inputs, fake_gan |
|
Guides: more_on_examples_and_flagging, using_hugging_face_integrations, image_classification_in_pytorch, image_classification_in_tensorflow, image_classification_with_vision_transformers, create_your_own_friends_with_a_gan |
|
""" |
|
|
|
def __init__( |
|
self, |
|
examples: List[Any] | List[List[Any]] | str, |
|
inputs: IOComponent | List[IOComponent], |
|
outputs: Optional[IOComponent | List[IOComponent]] = None, |
|
fn: Optional[Callable] = None, |
|
cache_examples: bool = False, |
|
examples_per_page: int = 10, |
|
_api_mode: bool = False, |
|
label: str = "Examples", |
|
elem_id: Optional[str] = None, |
|
run_on_click: bool = False, |
|
preprocess: bool = True, |
|
postprocess: bool = True, |
|
batch: bool = False, |
|
_initiated_directly: bool = True, |
|
): |
|
""" |
|
Parameters: |
|
examples: example inputs that can be clicked to populate specific components. Should be nested list, in which the outer list consists of samples and each inner list consists of an input corresponding to each input component. A string path to a directory of examples can also be provided but it should be within the directory with the python file running the gradio app. If there are multiple input components and a directory is provided, a log.csv file must be present in the directory to link corresponding inputs. |
|
inputs: the component or list of components corresponding to the examples |
|
outputs: optionally, provide the component or list of components corresponding to the output of the examples. Required if `cache` is True. |
|
fn: optionally, provide the function to run to generate the outputs corresponding to the examples. Required if `cache` is True. |
|
cache_examples: if True, caches examples for fast runtime. If True, then `fn` and `outputs` need to be provided |
|
examples_per_page: how many examples to show per page. |
|
label: the label to use for the examples component (by default, "Examples") |
|
elem_id: an optional string that is assigned as the id of this component in the HTML DOM. |
|
run_on_click: if cache_examples is False, clicking on an example does not run the function when an example is clicked. Set this to True to run the function when an example is clicked. Has no effect if cache_examples is True. |
|
preprocess: if True, preprocesses the example input before running the prediction function and caching the output. Only applies if cache_examples is True. |
|
postprocess: if True, postprocesses the example output after running the prediction function and before caching. Only applies if cache_examples is True. |
|
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. Used only if cache_examples is True. |
|
""" |
|
if _initiated_directly: |
|
warnings.warn( |
|
"Please use gr.Examples(...) instead of gr.examples.Examples(...) to create the Examples.", |
|
) |
|
|
|
if cache_examples and (fn is None or outputs is None): |
|
raise ValueError("If caching examples, `fn` and `outputs` must be provided") |
|
|
|
if not isinstance(inputs, list): |
|
inputs = [inputs] |
|
if not isinstance(outputs, list): |
|
outputs = [outputs] |
|
|
|
working_directory = Path().absolute() |
|
|
|
if examples is None: |
|
raise ValueError("The parameter `examples` cannot be None") |
|
elif isinstance(examples, list) and ( |
|
len(examples) == 0 or isinstance(examples[0], list) |
|
): |
|
pass |
|
elif ( |
|
isinstance(examples, list) and len(inputs) == 1 |
|
): |
|
examples = [[e] for e in examples] |
|
elif isinstance(examples, str): |
|
if not os.path.exists(examples): |
|
raise FileNotFoundError( |
|
"Could not find examples directory: " + examples |
|
) |
|
working_directory = examples |
|
if not os.path.exists(os.path.join(examples, LOG_FILE)): |
|
if len(inputs) == 1: |
|
examples = [[e] for e in os.listdir(examples)] |
|
else: |
|
raise FileNotFoundError( |
|
"Could not find log file (required for multiple inputs): " |
|
+ LOG_FILE |
|
) |
|
else: |
|
with open(os.path.join(examples, LOG_FILE)) as logs: |
|
examples = list(csv.reader(logs)) |
|
examples = [ |
|
examples[i][: len(inputs)] for i in range(1, len(examples)) |
|
] |
|
|
|
else: |
|
raise ValueError( |
|
"The parameter `examples` must either be a string directory or a list" |
|
"(if there is only 1 input component) or (more generally), a nested " |
|
"list, where each sublist represents a set of inputs." |
|
) |
|
|
|
input_has_examples = [False] * len(inputs) |
|
for example in examples: |
|
for idx, example_for_input in enumerate(example): |
|
if not (example_for_input is None): |
|
try: |
|
input_has_examples[idx] = True |
|
except IndexError: |
|
pass |
|
|
|
inputs_with_examples = [ |
|
inp for (inp, keep) in zip(inputs, input_has_examples) if keep |
|
] |
|
non_none_examples = [ |
|
[ex for (ex, keep) in zip(example, input_has_examples) if keep] |
|
for example in examples |
|
] |
|
|
|
self.examples = examples |
|
self.non_none_examples = non_none_examples |
|
self.inputs = inputs |
|
self.inputs_with_examples = inputs_with_examples |
|
self.outputs = outputs |
|
self.fn = fn |
|
self.cache_examples = cache_examples |
|
self._api_mode = _api_mode |
|
self.preprocess = preprocess |
|
self.postprocess = postprocess |
|
self.batch = batch |
|
|
|
with utils.set_directory(working_directory): |
|
self.processed_examples = [ |
|
[ |
|
component.postprocess(sample) |
|
for component, sample in zip(inputs, example) |
|
] |
|
for example in examples |
|
] |
|
self.non_none_processed_examples = [ |
|
[ex for (ex, keep) in zip(example, input_has_examples) if keep] |
|
for example in self.processed_examples |
|
] |
|
if cache_examples: |
|
for example in self.examples: |
|
if len([ex for ex in example if ex is not None]) != len(self.inputs): |
|
warnings.warn( |
|
"Examples are being cached but not all input components have " |
|
"example values. This may result in an exception being thrown by " |
|
"your function. If you do get an error while caching examples, make " |
|
"sure all of your inputs have example values for all of your examples " |
|
"or you provide default values for those particular parameters in your function." |
|
) |
|
break |
|
|
|
from gradio.components import Dataset |
|
|
|
with utils.set_directory(working_directory): |
|
self.dataset = Dataset( |
|
components=inputs_with_examples, |
|
samples=non_none_examples, |
|
type="index", |
|
label=label, |
|
samples_per_page=examples_per_page, |
|
elem_id=elem_id, |
|
) |
|
|
|
self.cached_folder = os.path.join(CACHED_FOLDER, str(self.dataset._id)) |
|
self.cached_file = os.path.join(self.cached_folder, "log.csv") |
|
self.cache_examples = cache_examples |
|
self.run_on_click = run_on_click |
|
|
|
async def create(self) -> None: |
|
"""Caches the examples if self.cache_examples is True and creates the Dataset |
|
component to hold the examples""" |
|
|
|
async def load_example(example_id): |
|
if self.cache_examples: |
|
processed_example = self.non_none_processed_examples[ |
|
example_id |
|
] + await self.load_from_cache(example_id) |
|
else: |
|
processed_example = self.non_none_processed_examples[example_id] |
|
return utils.resolve_singleton(processed_example) |
|
|
|
if Context.root_block: |
|
self.dataset.click( |
|
load_example, |
|
inputs=[self.dataset], |
|
outputs=self.inputs_with_examples |
|
+ (self.outputs if self.cache_examples else []), |
|
postprocess=False, |
|
queue=False, |
|
) |
|
if self.run_on_click and not self.cache_examples: |
|
self.dataset.click( |
|
self.fn, |
|
inputs=self.inputs, |
|
outputs=self.outputs, |
|
) |
|
|
|
if self.cache_examples: |
|
await self.cache() |
|
|
|
async def cache(self) -> None: |
|
""" |
|
Caches all of the examples so that their predictions can be shown immediately. |
|
""" |
|
if os.path.exists(self.cached_file): |
|
print( |
|
f"Using cache from '{os.path.abspath(self.cached_folder)}' directory. If method or examples have changed since last caching, delete this folder to clear cache." |
|
) |
|
else: |
|
if Context.root_block is None: |
|
raise ValueError("Cannot cache examples if not in a Blocks context") |
|
|
|
print(f"Caching examples at: '{os.path.abspath(self.cached_file)}'") |
|
cache_logger = CSVLogger() |
|
|
|
|
|
dependency = Context.root_block.set_event_trigger( |
|
event_name="fake_event", |
|
fn=self.fn, |
|
inputs=self.inputs_with_examples, |
|
outputs=self.outputs, |
|
preprocess=self.preprocess and not self._api_mode, |
|
postprocess=self.postprocess and not self._api_mode, |
|
batch=self.batch, |
|
) |
|
|
|
fn_index = Context.root_block.dependencies.index(dependency) |
|
cache_logger.setup(self.outputs, self.cached_folder) |
|
for example_id, _ in enumerate(self.examples): |
|
processed_input = self.processed_examples[example_id] |
|
if self.batch: |
|
processed_input = [[value] for value in processed_input] |
|
prediction = await Context.root_block.process_api( |
|
fn_index=fn_index, inputs=processed_input, request=None, state={} |
|
) |
|
output = prediction["data"] |
|
if self.batch: |
|
output = [value[0] for value in output] |
|
cache_logger.flag(output) |
|
|
|
Context.root_block.dependencies.remove(dependency) |
|
Context.root_block.fns.pop(fn_index) |
|
|
|
async def load_from_cache(self, example_id: int) -> List[Any]: |
|
"""Loads a particular cached example for the interface. |
|
Parameters: |
|
example_id: The id of the example to process (zero-indexed). |
|
""" |
|
with open(self.cached_file) as cache: |
|
examples = list(csv.reader(cache)) |
|
example = examples[example_id + 1] |
|
output = [] |
|
for component, value in zip(self.outputs, example): |
|
try: |
|
value_as_dict = ast.literal_eval(value) |
|
assert utils.is_update(value_as_dict) |
|
output.append(value_as_dict) |
|
except (ValueError, TypeError, SyntaxError, AssertionError): |
|
output.append(component.serialize(value, self.cached_folder)) |
|
return output |
|
|
|
|
|
class TrackedIterable: |
|
def __init__( |
|
self, |
|
iterable: Iterable, |
|
index: int | None, |
|
length: int | None, |
|
desc: str | None, |
|
unit: str | None, |
|
_tqdm=None, |
|
progress: float = None, |
|
) -> None: |
|
self.iterable = iterable |
|
self.index = index |
|
self.length = length |
|
self.desc = desc |
|
self.unit = unit |
|
self._tqdm = _tqdm |
|
self.progress = progress |
|
|
|
|
|
@document("__call__", "tqdm") |
|
class Progress(Iterable): |
|
""" |
|
The Progress class provides a custom progress tracker that is used in a function signature. |
|
To attach a Progress tracker to a function, simply add a parameter right after the input parameters that has a default value set to a `gradio.Progress()` instance. |
|
The Progress tracker can then be updated in the function by calling the Progress object or using the `tqdm` method on an Iterable. |
|
The Progress tracker is currently only available with `queue()`. |
|
Example: |
|
import gradio as gr |
|
import time |
|
def my_function(x, progress=gr.Progress()): |
|
progress(0, desc="Starting...") |
|
time.sleep(1) |
|
for i in progress.tqdm(range(100)): |
|
time.sleep(0.1) |
|
return x |
|
gr.Interface(my_function, gr.Textbox(), gr.Textbox()).queue().launch() |
|
Demos: progress |
|
""" |
|
|
|
def __init__( |
|
self, |
|
track_tqdm: bool = False, |
|
_active: bool = False, |
|
_callback: Callable = None, |
|
_event_id: str = None, |
|
): |
|
""" |
|
Parameters: |
|
track_tqdm: If True, the Progress object will track any tqdm.tqdm iterations with the tqdm library in the function. |
|
""" |
|
self.track_tqdm = track_tqdm |
|
self._active = _active |
|
self._callback = _callback |
|
self._event_id = _event_id |
|
self.iterables: List[TrackedIterable] = [] |
|
|
|
def __len__(self): |
|
return self.iterables[-1].length |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __next__(self): |
|
""" |
|
Updates progress tracker with next item in iterable. |
|
""" |
|
if self._active: |
|
current_iterable = self.iterables[-1] |
|
while ( |
|
not hasattr(current_iterable.iterable, "__next__") |
|
and len(self.iterables) > 0 |
|
): |
|
current_iterable = self.iterables.pop() |
|
self._callback( |
|
event_id=self._event_id, |
|
iterables=self.iterables, |
|
) |
|
current_iterable.index += 1 |
|
try: |
|
return next(current_iterable.iterable) |
|
except StopIteration: |
|
self.iterables.pop() |
|
raise StopIteration |
|
else: |
|
return self |
|
|
|
def __call__( |
|
self, |
|
progress: float | Tuple[int, int | None] | None, |
|
desc: str | None = None, |
|
total: float | None = None, |
|
unit: str = "steps", |
|
_tqdm=None, |
|
): |
|
""" |
|
Updates progress tracker with progress and message text. |
|
Parameters: |
|
progress: If float, should be between 0 and 1 representing completion. If Tuple, first number represents steps completed, and second value represents total steps or None if unknown. If None, hides progress bar. |
|
desc: description to display. |
|
total: estimated total number of steps. |
|
unit: unit of iterations. |
|
""" |
|
if self._active: |
|
if isinstance(progress, tuple): |
|
index, total = progress |
|
progress = None |
|
else: |
|
index = None |
|
self._callback( |
|
event_id=self._event_id, |
|
iterables=self.iterables |
|
+ [TrackedIterable(None, index, total, desc, unit, _tqdm, progress)], |
|
) |
|
else: |
|
return progress |
|
|
|
def tqdm( |
|
self, |
|
iterable: Iterable | None, |
|
desc: str = None, |
|
total: float = None, |
|
unit: str = "steps", |
|
_tqdm=None, |
|
*args, |
|
**kwargs, |
|
): |
|
""" |
|
Attaches progress tracker to iterable, like tqdm. |
|
Parameters: |
|
iterable: iterable to attach progress tracker to. |
|
desc: description to display. |
|
total: estimated total number of steps. |
|
unit: unit of iterations. |
|
""" |
|
if iterable is None: |
|
new_iterable = TrackedIterable(None, 0, total, desc, unit, _tqdm) |
|
self.iterables.append(new_iterable) |
|
self._callback(event_id=self._event_id, iterables=self.iterables) |
|
return |
|
length = len(iterable) if hasattr(iterable, "__len__") else None |
|
self.iterables.append( |
|
TrackedIterable(iter(iterable), 0, length, desc, unit, _tqdm) |
|
) |
|
return self |
|
|
|
def update(self, n=1): |
|
""" |
|
Increases latest iterable with specified number of steps. |
|
Parameters: |
|
n: number of steps completed. |
|
""" |
|
if self._active and len(self.iterables) > 0: |
|
current_iterable = self.iterables[-1] |
|
current_iterable.index += n |
|
self._callback( |
|
event_id=self._event_id, |
|
iterables=self.iterables, |
|
) |
|
else: |
|
return |
|
|
|
def close(self, _tqdm): |
|
""" |
|
Removes iterable with given _tqdm. |
|
""" |
|
if self._active: |
|
for i in range(len(self.iterables)): |
|
if id(self.iterables[i]._tqdm) == id(_tqdm): |
|
self.iterables.pop(i) |
|
break |
|
self._callback( |
|
event_id=self._event_id, |
|
iterables=self.iterables, |
|
) |
|
else: |
|
return |
|
|
|
|
|
def create_tracker(root_blocks, event_id, fn, track_tqdm): |
|
|
|
progress = Progress( |
|
_active=True, _callback=root_blocks._queue.set_progress, _event_id=event_id |
|
) |
|
if not track_tqdm: |
|
return progress, fn |
|
|
|
try: |
|
_tqdm = __import__("tqdm") |
|
except ModuleNotFoundError: |
|
return progress, fn |
|
if not hasattr(root_blocks, "_progress_tracker_per_thread"): |
|
root_blocks._progress_tracker_per_thread = {} |
|
|
|
def init_tqdm(self, iterable=None, desc=None, *args, **kwargs): |
|
self._progress = root_blocks._progress_tracker_per_thread.get( |
|
threading.get_ident() |
|
) |
|
if self._progress is not None: |
|
self._progress.event_id = event_id |
|
self._progress.tqdm(iterable, desc, _tqdm=self, *args, **kwargs) |
|
kwargs["file"] = open(os.devnull, "w") |
|
self.__init__orig__(iterable, desc, *args, **kwargs) |
|
|
|
def iter_tqdm(self): |
|
if self._progress is not None: |
|
return self._progress |
|
else: |
|
return self.__iter__orig__() |
|
|
|
def update_tqdm(self, n=1): |
|
if self._progress is not None: |
|
self._progress.update(n) |
|
return self.__update__orig__(n) |
|
|
|
def close_tqdm(self): |
|
if self._progress is not None: |
|
self._progress.close(self) |
|
return self.__close__orig__() |
|
|
|
def exit_tqdm(self, exc_type, exc_value, traceback): |
|
if self._progress is not None: |
|
self._progress.close(self) |
|
return self.__exit__orig__(exc_type, exc_value, traceback) |
|
|
|
if not hasattr(_tqdm.tqdm, "__init__orig__"): |
|
_tqdm.tqdm.__init__orig__ = _tqdm.tqdm.__init__ |
|
_tqdm.tqdm.__init__ = init_tqdm |
|
if not hasattr(_tqdm.tqdm, "__update__orig__"): |
|
_tqdm.tqdm.__update__orig__ = _tqdm.tqdm.update |
|
_tqdm.tqdm.update = update_tqdm |
|
if not hasattr(_tqdm.tqdm, "__close__orig__"): |
|
_tqdm.tqdm.__close__orig__ = _tqdm.tqdm.close |
|
_tqdm.tqdm.close = close_tqdm |
|
if not hasattr(_tqdm.tqdm, "__exit__orig__"): |
|
_tqdm.tqdm.__exit__orig__ = _tqdm.tqdm.__exit__ |
|
_tqdm.tqdm.__exit__ = exit_tqdm |
|
if not hasattr(_tqdm.tqdm, "__iter__orig__"): |
|
_tqdm.tqdm.__iter__orig__ = _tqdm.tqdm.__iter__ |
|
_tqdm.tqdm.__iter__ = iter_tqdm |
|
if hasattr(_tqdm, "auto") and hasattr(_tqdm.auto, "tqdm"): |
|
_tqdm.auto.tqdm = _tqdm.tqdm |
|
|
|
def tracked_fn(*args): |
|
thread_id = threading.get_ident() |
|
root_blocks._progress_tracker_per_thread[thread_id] = progress |
|
response = fn(*args) |
|
del root_blocks._progress_tracker_per_thread[thread_id] |
|
return response |
|
|
|
return progress, tracked_fn |
|
|
|
|
|
def special_args( |
|
fn: Callable, |
|
inputs: List[Any] | None = None, |
|
request: routes.Request | None = None, |
|
): |
|
""" |
|
Checks if function has special arguments Request (via annotation) or Progress (via default value). |
|
If inputs is provided, these values will be loaded into the inputs array. |
|
Parameters: |
|
block_fn: function to check. |
|
inputs: array to load special arguments into. |
|
request: request to load into inputs. |
|
Returns: |
|
updated inputs, request index, progress index |
|
""" |
|
signature = inspect.signature(fn) |
|
positional_args = [] |
|
for i, param in enumerate(signature.parameters.values()): |
|
if param.kind not in (param.POSITIONAL_ONLY, param.POSITIONAL_OR_KEYWORD): |
|
break |
|
positional_args.append(param) |
|
progress_index = None |
|
for i, param in enumerate(positional_args): |
|
if isinstance(param.default, Progress): |
|
progress_index = i |
|
if inputs is not None: |
|
inputs.insert(i, param.default) |
|
elif param.annotation == routes.Request: |
|
if inputs is not None: |
|
inputs.insert(i, request) |
|
if inputs is not None: |
|
while len(inputs) < len(positional_args): |
|
i = len(inputs) |
|
param = positional_args[i] |
|
if param.default == param.empty: |
|
warnings.warn("Unexpected argument. Filling with None.") |
|
inputs.append(None) |
|
else: |
|
inputs.append(param.default) |
|
return inputs or [], progress_index |
|
|
|
|
|
@document() |
|
def update(**kwargs) -> dict: |
|
""" |
|
Updates component properties. When a function passed into a Gradio Interface or a Blocks events returns a typical value, it updates the value of the output component. But it is also possible to update the properties of an output component (such as the number of lines of a `Textbox` or the visibility of an `Image`) by returning the component's `update()` function, which takes as parameters any of the constructor parameters for that component. |
|
This is a shorthand for using the update method on a component. |
|
For example, rather than using gr.Number.update(...) you can just use gr.update(...). |
|
Note that your editor's autocompletion will suggest proper parameters |
|
if you use the update method on the component. |
|
Demos: blocks_essay, blocks_update, blocks_essay_update |
|
|
|
Parameters: |
|
kwargs: Key-word arguments used to update the component's properties. |
|
Example: |
|
# Blocks Example |
|
import gradio as gr |
|
with gr.Blocks() as demo: |
|
radio = gr.Radio([1, 2, 4], label="Set the value of the number") |
|
number = gr.Number(value=2, interactive=True) |
|
radio.change(fn=lambda value: gr.update(value=value), inputs=radio, outputs=number) |
|
demo.launch() |
|
|
|
# Interface example |
|
import gradio as gr |
|
def change_textbox(choice): |
|
if choice == "short": |
|
return gr.Textbox.update(lines=2, visible=True) |
|
elif choice == "long": |
|
return gr.Textbox.update(lines=8, visible=True) |
|
else: |
|
return gr.Textbox.update(visible=False) |
|
gr.Interface( |
|
change_textbox, |
|
gr.Radio( |
|
["short", "long", "none"], label="What kind of essay would you like to write?" |
|
), |
|
gr.Textbox(lines=2), |
|
live=True, |
|
).launch() |
|
""" |
|
kwargs["__type__"] = "generic_update" |
|
return kwargs |
|
|
|
|
|
def skip() -> dict: |
|
return update() |
|
|
|
|
|
@document() |
|
def make_waveform( |
|
audio: str | Tuple[int, np.ndarray], |
|
*, |
|
bg_color: str = "#f3f4f6", |
|
bg_image: str = None, |
|
fg_alpha: float = 0.75, |
|
bars_color: str | Tuple[str, str] = ("#fbbf24", "#ea580c"), |
|
bar_count: int = 50, |
|
bar_width: float = 0.6, |
|
): |
|
""" |
|
Generates a waveform video from an audio file. Useful for creating an easy to share audio visualization. The output should be passed into a `gr.Video` component. |
|
Parameters: |
|
audio: Audio file path or tuple of (sample_rate, audio_data) |
|
bg_color: Background color of waveform (ignored if bg_image is provided) |
|
bg_image: Background image of waveform |
|
fg_alpha: Opacity of foreground waveform |
|
bars_color: Color of waveform bars. Can be a single color or a tuple of (start_color, end_color) of gradient |
|
bar_count: Number of bars in waveform |
|
bar_width: Width of bars in waveform. 1 represents full width, 0.5 represents half width, etc. |
|
Returns: |
|
A filepath to the output video. |
|
""" |
|
if isinstance(audio, str): |
|
audio_file = audio |
|
audio = processing_utils.audio_from_file(audio) |
|
else: |
|
tmp_wav = tempfile.NamedTemporaryFile(suffix=".wav", delete=False) |
|
processing_utils.audio_to_file(audio[0], audio[1], tmp_wav.name) |
|
audio_file = tmp_wav.name |
|
duration = round(len(audio[1]) / audio[0], 4) |
|
|
|
|
|
def hex_to_RGB(hex_str): |
|
return [int(hex_str[i : i + 2], 16) for i in range(1, 6, 2)] |
|
|
|
def get_color_gradient(c1, c2, n): |
|
assert n > 1 |
|
c1_rgb = np.array(hex_to_RGB(c1)) / 255 |
|
c2_rgb = np.array(hex_to_RGB(c2)) / 255 |
|
mix_pcts = [x / (n - 1) for x in range(n)] |
|
rgb_colors = [((1 - mix) * c1_rgb + (mix * c2_rgb)) for mix in mix_pcts] |
|
return [ |
|
"#" + "".join([format(int(round(val * 255)), "02x") for val in item]) |
|
for item in rgb_colors |
|
] |
|
|
|
|
|
samples = audio[1] |
|
if len(samples.shape) > 1: |
|
samples = np.mean(samples, 1) |
|
bins_to_pad = bar_count - (len(samples) % bar_count) |
|
samples = np.pad(samples, [(0, bins_to_pad)]) |
|
samples = np.reshape(samples, (bar_count, -1)) |
|
samples = np.abs(samples) |
|
samples = np.max(samples, 1) |
|
|
|
matplotlib.use("Agg") |
|
plt.clf() |
|
|
|
color = ( |
|
bars_color |
|
if isinstance(bars_color, str) |
|
else get_color_gradient(bars_color[0], bars_color[1], bar_count) |
|
) |
|
plt.bar( |
|
np.arange(0, bar_count), |
|
samples * 2, |
|
bottom=(-1 * samples), |
|
width=bar_width, |
|
color=color, |
|
) |
|
plt.axis("off") |
|
plt.margins(x=0) |
|
tmp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False) |
|
savefig_kwargs = {"bbox_inches": "tight"} |
|
if bg_image is not None: |
|
savefig_kwargs["transparent"] = True |
|
else: |
|
savefig_kwargs["facecolor"] = bg_color |
|
plt.savefig(tmp_img.name, **savefig_kwargs) |
|
waveform_img = PIL.Image.open(tmp_img.name) |
|
waveform_img = waveform_img.resize((1000, 200)) |
|
|
|
|
|
if bg_image is not None: |
|
waveform_array = np.array(waveform_img) |
|
waveform_array[:, :, 3] = waveform_array[:, :, 3] * fg_alpha |
|
waveform_img = PIL.Image.fromarray(waveform_array) |
|
|
|
bg_img = PIL.Image.open(bg_image) |
|
waveform_width, waveform_height = waveform_img.size |
|
bg_width, bg_height = bg_img.size |
|
if waveform_width != bg_width: |
|
bg_img = bg_img.resize( |
|
(waveform_width, 2 * int(bg_height * waveform_width / bg_width / 2)) |
|
) |
|
bg_width, bg_height = bg_img.size |
|
composite_height = max(bg_height, waveform_height) |
|
composite = PIL.Image.new("RGBA", (waveform_width, composite_height), "#FFFFFF") |
|
composite.paste(bg_img, (0, composite_height - bg_height)) |
|
composite.paste( |
|
waveform_img, (0, composite_height - waveform_height), waveform_img |
|
) |
|
composite.save(tmp_img.name) |
|
img_width, img_height = composite.size |
|
else: |
|
img_width, img_height = waveform_img.size |
|
waveform_img.save(tmp_img.name) |
|
|
|
|
|
output_mp4 = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) |
|
|
|
ffmpeg_cmd = f"""ffmpeg -loop 1 -i {tmp_img.name} -i {audio_file} -vf "color=c=#FFFFFF77:s={img_width}x{img_height}[bar];[0][bar]overlay=-w+(w/{duration})*t:H-h:shortest=1" -t {duration} -y {output_mp4.name}""" |
|
|
|
subprocess.call(ffmpeg_cmd, shell=True) |
|
return output_mp4.name |
|
|