Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,117 +1,8 @@
|
|
1 |
-
import os
|
2 |
-
os.system("pip install dlib")
|
3 |
-
import sys
|
4 |
-
import face_detection
|
5 |
-
from PIL import Image, ImageOps, ImageFile
|
6 |
-
import numpy as np
|
7 |
-
import cv2 as cv
|
8 |
-
import torch
|
9 |
import gradio as gr
|
|
|
10 |
|
11 |
-
torch.set_grad_enabled(False)
|
12 |
-
|
13 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", device=device).eval()
|
15 |
-
model2 = torch.hub.load("AK391/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v1", device=device).eval()
|
16 |
-
face2paint = torch.hub.load("bryandlee/animegan2-pytorch:main", "face2paint", device=device)
|
17 |
-
image_format = "png" #@param ["jpeg", "png"]
|
18 |
-
|
19 |
-
def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=2.0, threshold=0):
|
20 |
-
"""Return a sharpened version of the image, using an unsharp mask."""
|
21 |
-
blurred = cv.GaussianBlur(image, kernel_size, sigma)
|
22 |
-
sharpened = float(amount + 1) * image - float(amount) * blurred
|
23 |
-
sharpened = np.maximum(sharpened, np.zeros(sharpened.shape))
|
24 |
-
sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape))
|
25 |
-
sharpened = sharpened.round().astype(np.uint8)
|
26 |
-
if threshold > 0:
|
27 |
-
low_contrast_mask = np.absolute(image - blurred) < threshold
|
28 |
-
np.copyto(sharpened, image, where=low_contrast_mask)
|
29 |
-
return sharpened
|
30 |
-
|
31 |
-
def normPRED(d):
|
32 |
-
ma = np.max(d)
|
33 |
-
mi = np.min(d)
|
34 |
-
|
35 |
-
dn = (d-mi)/(ma-mi)
|
36 |
-
|
37 |
-
return dn
|
38 |
-
|
39 |
-
def array_to_np(array_in):
|
40 |
-
array_in = normPRED(array_in)
|
41 |
-
array_in = np.squeeze(255.0*(array_in))
|
42 |
-
array_in = np.transpose(array_in, (1, 2, 0))
|
43 |
-
return array_in
|
44 |
-
|
45 |
-
def array_to_image(array_in):
|
46 |
-
array_in = normPRED(array_in)
|
47 |
-
array_in = np.squeeze(255.0*(array_in))
|
48 |
-
array_in = np.transpose(array_in, (1, 2, 0))
|
49 |
-
im = Image.fromarray(array_in.astype(np.uint8))
|
50 |
-
return im
|
51 |
-
|
52 |
-
|
53 |
-
def image_as_array(image_in):
|
54 |
-
image_in = np.array(image_in, np.float32)
|
55 |
-
tmpImg = np.zeros((image_in.shape[0],image_in.shape[1],3))
|
56 |
-
image_in = image_in/np.max(image_in)
|
57 |
-
if image_in.shape[2]==1:
|
58 |
-
tmpImg[:,:,0] = (image_in[:,:,0]-0.485)/0.229
|
59 |
-
tmpImg[:,:,1] = (image_in[:,:,0]-0.485)/0.229
|
60 |
-
tmpImg[:,:,2] = (image_in[:,:,0]-0.485)/0.229
|
61 |
-
else:
|
62 |
-
tmpImg[:,:,0] = (image_in[:,:,0]-0.485)/0.229
|
63 |
-
tmpImg[:,:,1] = (image_in[:,:,1]-0.456)/0.224
|
64 |
-
tmpImg[:,:,2] = (image_in[:,:,2]-0.406)/0.225
|
65 |
-
|
66 |
-
tmpImg = tmpImg.transpose((2, 0, 1))
|
67 |
-
image_out = np.expand_dims(tmpImg, 0)
|
68 |
-
return image_out
|
69 |
-
|
70 |
-
# detect a face
|
71 |
-
def find_aligned_face(image_in, size=400):
|
72 |
-
aligned_image, n_faces, quad = face_detection.align(image_in, face_index=0, output_size=size)
|
73 |
-
return aligned_image, n_faces, quad
|
74 |
-
|
75 |
-
# clip the face, return array
|
76 |
-
def align_first_face(image_in, size=400):
|
77 |
-
aligned_image, n_faces, quad = find_aligned_face(image_in,size=size)
|
78 |
-
if n_faces == 0:
|
79 |
-
try:
|
80 |
-
image_in = ImageOps.exif_transpose(image_in)
|
81 |
-
except:
|
82 |
-
print("exif problem, not rotating")
|
83 |
-
image_in = image_in.resize((size, size))
|
84 |
-
im_array = image_as_array(image_in)
|
85 |
-
else:
|
86 |
-
im_array = image_as_array(aligned_image)
|
87 |
-
|
88 |
-
return im_array
|
89 |
-
|
90 |
-
def img_concat_h(im1, im2):
|
91 |
-
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
|
92 |
-
dst.paste(im1, (0, 0))
|
93 |
-
dst.paste(im2, (im1.width, 0))
|
94 |
-
return dst
|
95 |
-
|
96 |
-
def paintface(img: Image.Image,size: int) -> Image.Image:
|
97 |
-
aligned_img = align_first_face(img,size)
|
98 |
-
if aligned_img is None:
|
99 |
-
output=None
|
100 |
-
else:
|
101 |
-
im_in = array_to_image(aligned_img).convert("RGB")
|
102 |
-
im_out1 = face2paint(model, im_in, side_by_side=False)
|
103 |
-
im_out2 = face2paint(model2, im_in, side_by_side=False)
|
104 |
-
|
105 |
-
output = img_concat_h(im_out1, im_out2)
|
106 |
-
return output
|
107 |
-
|
108 |
-
def generate(img):
|
109 |
-
out = paintface(img, 400)
|
110 |
-
return out
|
111 |
-
|
112 |
-
|
113 |
title = "Face from Photo into Handed-paint"
|
114 |
-
description = "Upload a photo, this Ai will detect and transfer only the main face into cartoon/anime handed
|
115 |
article = "Examples are from Internet"
|
116 |
|
117 |
Example=[['Example01.jpg'],['Example02.jpg'],['Example03.jpg']]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from paintingface import generate
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
title = "Face from Photo into Handed-paint"
|
5 |
+
description = "Upload a photo, this Ai will detect and transfer only the main face into cartoon/anime handed-painting style. (If cannot detect a face, try the edit button on the right corner of the picture to crop the photo manually.)"
|
6 |
article = "Examples are from Internet"
|
7 |
|
8 |
Example=[['Example01.jpg'],['Example02.jpg'],['Example03.jpg']]
|