Catmeow commited on
Commit
851fb3f
Β·
1 Parent(s): c97a051

Create paintingface

Browse files
Files changed (1) hide show
  1. paintingface +110 -0
paintingface ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.system("pip install dlib")
3
+ import sys
4
+ import face_detection
5
+ from PIL import Image, ImageOps, ImageFile
6
+ import numpy as np
7
+ import cv2 as cv
8
+ import torch
9
+ import gradio as gr
10
+
11
+ torch.set_grad_enabled(False)
12
+
13
+ device = "cuda" if torch.cuda.is_available() else "cpu"
14
+ model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", device=device).eval()
15
+ model2 = torch.hub.load("AK391/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v1", device=device).eval()
16
+ face2paint = torch.hub.load("bryandlee/animegan2-pytorch:main", "face2paint", device=device)
17
+ image_format = "png" #@param ["jpeg", "png"]
18
+
19
+ def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=2.0, threshold=0):
20
+ """Return a sharpened version of the image, using an unsharp mask."""
21
+ blurred = cv.GaussianBlur(image, kernel_size, sigma)
22
+ sharpened = float(amount + 1) * image - float(amount) * blurred
23
+ sharpened = np.maximum(sharpened, np.zeros(sharpened.shape))
24
+ sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape))
25
+ sharpened = sharpened.round().astype(np.uint8)
26
+ if threshold > 0:
27
+ low_contrast_mask = np.absolute(image - blurred) < threshold
28
+ np.copyto(sharpened, image, where=low_contrast_mask)
29
+ return sharpened
30
+
31
+ def normPRED(d):
32
+ ma = np.max(d)
33
+ mi = np.min(d)
34
+
35
+ dn = (d-mi)/(ma-mi)
36
+
37
+ return dn
38
+
39
+ def array_to_np(array_in):
40
+ array_in = normPRED(array_in)
41
+ array_in = np.squeeze(255.0*(array_in))
42
+ array_in = np.transpose(array_in, (1, 2, 0))
43
+ return array_in
44
+
45
+ def array_to_image(array_in):
46
+ array_in = normPRED(array_in)
47
+ array_in = np.squeeze(255.0*(array_in))
48
+ array_in = np.transpose(array_in, (1, 2, 0))
49
+ im = Image.fromarray(array_in.astype(np.uint8))
50
+ return im
51
+
52
+
53
+ def image_as_array(image_in):
54
+ image_in = np.array(image_in, np.float32)
55
+ tmpImg = np.zeros((image_in.shape[0],image_in.shape[1],3))
56
+ image_in = image_in/np.max(image_in)
57
+ if image_in.shape[2]==1:
58
+ tmpImg[:,:,0] = (image_in[:,:,0]-0.485)/0.229
59
+ tmpImg[:,:,1] = (image_in[:,:,0]-0.485)/0.229
60
+ tmpImg[:,:,2] = (image_in[:,:,0]-0.485)/0.229
61
+ else:
62
+ tmpImg[:,:,0] = (image_in[:,:,0]-0.485)/0.229
63
+ tmpImg[:,:,1] = (image_in[:,:,1]-0.456)/0.224
64
+ tmpImg[:,:,2] = (image_in[:,:,2]-0.406)/0.225
65
+
66
+ tmpImg = tmpImg.transpose((2, 0, 1))
67
+ image_out = np.expand_dims(tmpImg, 0)
68
+ return image_out
69
+
70
+ # detect a face
71
+ def find_aligned_face(image_in, size=400):
72
+ aligned_image, n_faces, quad = face_detection.align(image_in, face_index=0, output_size=size)
73
+ return aligned_image, n_faces, quad
74
+
75
+ # clip the face, return array
76
+ def align_first_face(image_in, size=400):
77
+ aligned_image, n_faces, quad = find_aligned_face(image_in,size=size)
78
+ if n_faces == 0:
79
+ try:
80
+ image_in = ImageOps.exif_transpose(image_in)
81
+ except:
82
+ print("exif problem, not rotating")
83
+ image_in = image_in.resize((size, size))
84
+ im_array = image_as_array(image_in)
85
+ else:
86
+ im_array = image_as_array(aligned_image)
87
+
88
+ return im_array
89
+
90
+ def img_concat_h(im1, im2):
91
+ dst = Image.new('RGB', (im1.width + im2.width, im1.height))
92
+ dst.paste(im1, (0, 0))
93
+ dst.paste(im2, (im1.width, 0))
94
+ return dst
95
+
96
+ def paintface(img: Image.Image,size: int) -> Image.Image:
97
+ aligned_img = align_first_face(img,size)
98
+ if aligned_img is None:
99
+ output=None
100
+ else:
101
+ im_in = array_to_image(aligned_img).convert("RGB")
102
+ im_out1 = face2paint(model, im_in, side_by_side=False)
103
+ im_out2 = face2paint(model2, im_in, side_by_side=False)
104
+
105
+ output = img_concat_h(im_out1, im_out2)
106
+ return output
107
+
108
+ def generate(img):
109
+ out = paintface(img, 400)
110
+ return out