Spaces:
Runtime error
Runtime error
| # adopted from | |
| # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py | |
| # and | |
| # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py | |
| # and | |
| # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py | |
| # | |
| # thanks! | |
| import torch | |
| import torch.nn as nn | |
| import einops | |
| from inspect import isfunction | |
| def zero_module(module): | |
| """ | |
| Zero out the parameters of a module and return it. | |
| """ | |
| for p in module.parameters(): | |
| p.detach().zero_() | |
| return module | |
| def scale_module(module, scale): | |
| """ | |
| Scale the parameters of a module and return it. | |
| """ | |
| for p in module.parameters(): | |
| p.detach().mul_(scale) | |
| return module | |
| def conv_nd(dims, *args, **kwargs): | |
| """ | |
| Create a 1D, 2D, or 3D convolution module. | |
| """ | |
| if dims == 1: | |
| return nn.Conv1d(*args, **kwargs) | |
| elif dims == 2: | |
| return nn.Conv2d(*args, **kwargs) | |
| elif dims == 3: | |
| return nn.Conv3d(*args, **kwargs) | |
| raise ValueError(f"unsupported dimensions: {dims}") | |
| def linear(*args, **kwargs): | |
| """ | |
| Create a linear module. | |
| """ | |
| return nn.Linear(*args, **kwargs) | |
| def avg_pool_nd(dims, *args, **kwargs): | |
| """ | |
| Create a 1D, 2D, or 3D average pooling module. | |
| """ | |
| if dims == 1: | |
| return nn.AvgPool1d(*args, **kwargs) | |
| elif dims == 2: | |
| return nn.AvgPool2d(*args, **kwargs) | |
| elif dims == 3: | |
| return nn.AvgPool3d(*args, **kwargs) | |
| raise ValueError(f"unsupported dimensions: {dims}") | |
| def nonlinearity(type='silu'): | |
| if type == 'silu': | |
| return nn.SiLU() | |
| elif type == 'leaky_relu': | |
| return nn.LeakyReLU() | |
| def normalization(channels, num_groups=32): | |
| """ | |
| Make a standard normalization layer. | |
| :param channels: number of input channels. | |
| :return: an nn.Module for normalization. | |
| """ | |
| return nn.GroupNorm(num_groups, channels) | |
| def default(val, d): | |
| if exists(val): | |
| return val | |
| return d() if isfunction(d) else d | |
| def exists(val): | |
| return val is not None | |
| def extract_into_tensor(a, t, x_shape): | |
| b, *_ = t.shape | |
| out = a.gather(-1, t) | |
| return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
| def make_temporal_window(x, t, method): | |
| assert method in ['roll', 'prv', 'first'] | |
| if method == 'roll': | |
| m = einops.rearrange(x, '(b t) d c -> b t d c', t=t) | |
| l = torch.roll(m, shifts=1, dims=1) | |
| r = torch.roll(m, shifts=-1, dims=1) | |
| recon = torch.cat([l, m, r], dim=2) | |
| del l, m, r | |
| recon = einops.rearrange(recon, 'b t d c -> (b t) d c') | |
| return recon | |
| if method == 'prv': | |
| x = einops.rearrange(x, '(b t) d c -> b t d c', t=t) | |
| prv = torch.cat([x[:, :1], x[:, :-1]], dim=1) | |
| recon = torch.cat([x, prv], dim=2) | |
| del x, prv | |
| recon = einops.rearrange(recon, 'b t d c -> (b t) d c') | |
| return recon | |
| if method == 'first': | |
| x = einops.rearrange(x, '(b t) d c -> b t d c', t=t) | |
| prv = x[:, [0], :, :].repeat(1, t, 1, 1) | |
| recon = torch.cat([x, prv], dim=2) | |
| del x, prv | |
| recon = einops.rearrange(recon, 'b t d c -> (b t) d c') | |
| return recon | |
| def checkpoint(func, inputs, params, flag): | |
| """ | |
| Evaluate a function without caching intermediate activations, allowing for | |
| reduced memory at the expense of extra compute in the backward pass. | |
| :param func: the function to evaluate. | |
| :param inputs: the argument sequence to pass to `func`. | |
| :param params: a sequence of parameters `func` depends on but does not | |
| explicitly take as arguments. | |
| :param flag: if False, disable gradient checkpointing. | |
| """ | |
| if flag: | |
| return torch.utils.checkpoint.checkpoint(func, *inputs, use_reentrant=False) | |
| else: | |
| return func(*inputs) | |