bug-bounty / app.py
Canstralian's picture
Create app.py
92f5f85 verified
raw
history blame
1.85 kB
import streamlit as st
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.common.by import By
import pandas as pd
import langchain as lc
import openai
# Configure WebDriver path (locally; use custom Docker setup for Spaces)
# service = Service('/path/to/chromedriver')
# options = webdriver.ChromeOptions()
# options.add_argument("--headless")
# driver = webdriver.Chrome(service=service, options=options)
st.title("Cybersecurity Vulnerability Scanner & AI Analyzer")
url = st.text_input("Enter the target URL:")
if st.button("Scrape and Scan"):
if url:
st.write(f"Processing {url}...")
# Example data structure for scanned elements
scraped_data = {
"links": ["http://example.com/link1", "http://example.com/link2"],
"js_files": ["http://example.com/script1.js", "http://example.com/script2.js"],
"forms": ["http://example.com/form_action1", "http://example.com/form_action2"]
}
st.success("Scraping and scanning complete!")
st.write("Links:", scraped_data["links"])
st.write("JavaScript Files:", scraped_data["js_files"])
st.write("Forms:", scraped_data["forms"])
else:
st.warning("Please enter a valid URL.")
# AI-based Analysis Section
user_prompt = st.text_area("Enter an AI prompt for analysis:")
if st.button("Analyze with AI"):
if user_prompt:
# Example of LangChain or OpenAI for analysis
llm = lc.LLMChain(llm=lc.OpenAI())
full_prompt = f"{user_prompt}\nLinks:\n{scraped_data['links']}\nJS Files:\n{scraped_data['js_files']}\nForms:\n{scraped_data['forms']}"
ai_analysis = llm.run(full_prompt)
st.write("AI Analysis:")
st.write(ai_analysis)
else:
st.warning("Please provide an AI prompt for analysis.")