import streamlit as st from selenium import webdriver from selenium.webdriver.chrome.service import Service from selenium.webdriver.common.by import By import pandas as pd import langchain as lc import openai # Configure WebDriver path (locally; use custom Docker setup for Spaces) # service = Service('/path/to/chromedriver') # options = webdriver.ChromeOptions() # options.add_argument("--headless") # driver = webdriver.Chrome(service=service, options=options) st.title("Cybersecurity Vulnerability Scanner & AI Analyzer") url = st.text_input("Enter the target URL:") if st.button("Scrape and Scan"): if url: st.write(f"Processing {url}...") # Example data structure for scanned elements scraped_data = { "links": ["http://example.com/link1", "http://example.com/link2"], "js_files": ["http://example.com/script1.js", "http://example.com/script2.js"], "forms": ["http://example.com/form_action1", "http://example.com/form_action2"] } st.success("Scraping and scanning complete!") st.write("Links:", scraped_data["links"]) st.write("JavaScript Files:", scraped_data["js_files"]) st.write("Forms:", scraped_data["forms"]) else: st.warning("Please enter a valid URL.") # AI-based Analysis Section user_prompt = st.text_area("Enter an AI prompt for analysis:") if st.button("Analyze with AI"): if user_prompt: # Example of LangChain or OpenAI for analysis llm = lc.LLMChain(llm=lc.OpenAI()) full_prompt = f"{user_prompt}\nLinks:\n{scraped_data['links']}\nJS Files:\n{scraped_data['js_files']}\nForms:\n{scraped_data['forms']}" ai_analysis = llm.run(full_prompt) st.write("AI Analysis:") st.write(ai_analysis) else: st.warning("Please provide an AI prompt for analysis.")