title: RougeRaw
emoji: π€
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 5.4.0
app_file: app.py
pinned: false
tags:
- evaluate
- metric
description: >-
ROUGE RAW is language-agnostic variant of ROUGE without stemmer, stop words
and synonymas. This is a wrapper around the original
http://hdl.handle.net/11234/1-2615 script.
Metric Card for RougeRaw
Metric Description
ROUGE RAW is language-agnostic variant of ROUGE without stemmer, stop words and synonymas. This is a wrapper around the original http://hdl.handle.net/11234/1-2615 script.
How to Use
import evaluate
rougeraw = evaluate.load('CZLC/rouge_raw')
predictions = ["the cat is on the mat", "hello there"]
references = ["the cat is on the mat", "hello there"]
results = rougeraw.compute(predictions=predictions, references=references)
print(results)
{'1_low_precision': 1.0, '1_low_recall': 1.0, '1_low_fmeasure': 1.0, '1_mid_precision': 1.0, '1_mid_recall': 1.0, '1_mid_fmeasure': 1.0, '1_high_precision': 1.0, '1_high_recall': 1.0, '1_high_fmeasure': 1.0, '2_low_precision': 1.0, '2_low_recall': 1.0, '2_low_fmeasure': 1.0, '2_mid_precision': 1.0, '2_mid_recall': 1.0, '2_mid_fmeasure': 1.0, '2_high_precision': 1.0, '2_high_recall': 1.0, '2_high_fmeasure': 1.0, 'L_low_precision': 1.0, 'L_low_recall': 1.0, 'L_low_fmeasure': 1.0, 'L_mid_precision': 1.0, 'L_mid_recall': 1.0, 'L_mid_fmeasure': 1.0, 'L_high_precision': 1.0, 'L_high_recall': 1.0, 'L_high_fmeasure': 1.0}
Inputs
predictions: list of predictions to evaluate. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by space
Output Values
This metric outputs a dictionary, containing the scores.
There are precision, recall, F1 values for rougeraw-1, rougeraw-2 and rougeraw-l. By default the bootstrapped confidence intervals are calculated, meaning that for each metric there are low, mid , high values specifying the confidence interval.
Key format:
{1|2|L}_{low|mid|high}_{precision|recall|fmeasure}
e.g.: 1_low_precision
If aggregate is False the format is:
{1|2|L}_{precision|recall|fmeasure}
e.g.: 1_precision
Citation(s)
@inproceedings{straka-etal-2018-sumeczech,
title = "{S}ume{C}zech: Large {C}zech News-Based Summarization Dataset",
author = "Straka, Milan and
Mediankin, Nikita and
Kocmi, Tom and
{\v{Z}}abokrtsk{\'y}, Zden{\v{e}}k and
Hude{\v{c}}ek, Vojt{\v{e}}ch and
Haji{\v{c}}, Jan",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Hasida, Koiti and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios and
Tokunaga, Takenobu",
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
month = may,
year = "2018",
address = "Miyazaki, Japan",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L18-1551",
}