|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torchvision.models as models |
|
import einops |
|
|
|
def predict(img): |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
model = models.resnet50() |
|
model.fc = nn.Linear(2048, 720) |
|
resume_path = 'full+++++.pth' |
|
model.load_state_dict(torch.load(resume_path)) |
|
model.to(device) |
|
with torch.no_grad(): |
|
model.eval() |
|
img = cv2.resize(img, (224, 224))/255. |
|
img = np.stack([einops.rearrange(img, 'h w c -> c h w')], 0) |
|
img = torch.Tensor(img).float().to(device) |
|
pred = model(img) |
|
max_pred = torch.argsort(pred, dim=1, descending=True) |
|
max_h = (max_pred[0][0] // 60).item() |
|
max_m = (max_pred[0][0] % 60).item() |
|
return '{}:{}'.format(str(max_h), str(max_m).zfill(2)) |
|
|
|
inputs = gr.inputs.Image() |
|
|
|
io = gr.Interface( |
|
fn=predict, |
|
inputs=inputs, |
|
outputs="text", |
|
) |
|
|
|
io.launch(share=True) |
|
|