Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import torch | |
from transformers import pipeline | |
from prometheus_client import start_http_server, Counter, Summary | |
from typing import Iterable | |
from gradio.themes.base import Base | |
from gradio.themes.utils import colors, fonts, sizes | |
# Prometheus metrics | |
REQUEST_COUNTER = Counter('app_requests_total', 'Total number of requests') | |
SUCCESSFUL_REQUESTS = Counter('app_successful_requests_total', 'Total number of successful requests') | |
FAILED_REQUESTS = Counter('app_failed_requests_total', 'Total number of failed requests') | |
REQUEST_DURATION = Summary('app_request_duration_seconds', 'Time spent processing request') | |
# import os | |
# from dotenv import load_dotenv | |
# load_dotenv() | |
# | |
# HF_ACCESS = os.getenv("HF_ACCESS") | |
# Inference client setup | |
client = InferenceClient(model="mistralai/Mistral-Small-Instruct-2409", | |
# token=HF_ACCESS | |
) | |
pipe = pipeline("text-generation", "microsoft/Phi-3-mini-4k-instruct", torch_dtype=torch.bfloat16, device_map="auto") | |
# Global flag to handle cancellation | |
stop_inference = False | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message="You are a friendly and playful cat. Answer all user queries clearly and engagingly", | |
max_tokens=512, | |
temperature=0.7, | |
top_p=0.95, | |
use_local_model=False, | |
): | |
system_message += " You also love puns and add 'meow' at the end of every response." | |
global stop_inference | |
stop_inference = False # Reset cancellation flag | |
REQUEST_COUNTER.inc() # Increment request counter | |
request_timer = REQUEST_DURATION.time() # Start timing the request | |
try: | |
# Initialize history if it's None | |
if history is None: | |
history = [] | |
if use_local_model: | |
# local inference | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for output in pipe( | |
messages, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
do_sample=True, | |
top_p=top_p, | |
): | |
if stop_inference: | |
response = "Inference cancelled." | |
yield history + [(message, response)] | |
return | |
token = output['generated_text'][-1]['content'] | |
response += token | |
yield history + [(message, response)] # Yield history + new response | |
else: | |
# API-based inference | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message_chunk in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
if stop_inference: | |
response = "Inference cancelled." | |
yield history + [(message, response)] | |
return | |
if stop_inference: | |
response = "Inference cancelled." | |
break | |
token = message_chunk.choices[0].delta.content | |
response += token | |
yield history + [(message, response)] # Yield history + new response | |
SUCCESSFUL_REQUESTS.inc() # Increment successful request counter | |
except Exception as e: | |
FAILED_REQUESTS.inc() # Increment failed request counter | |
yield history + [(message, f"Error: {str(e)}")] | |
finally: | |
request_timer.observe_duration() # Stop timing the request | |
def cancel_inference(): | |
global stop_inference | |
stop_inference = True | |
# Custom CSS for a fancy look | |
custom_css = """ | |
#main-container { | |
background-color: #FFC0CB; | |
background-image: url('file=image.ipg'); | |
font-family: 'Arial', sans-serif; | |
} | |
.gradio-container { | |
max-width: 700px; | |
margin: 0 auto; | |
padding: 20px; | |
background: #FFC0CB; | |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); | |
border-radius: 10px; | |
} | |
.gr-button { | |
background-color: #4CAF50; | |
color: white; | |
border: none; | |
border-radius: 5px; | |
padding: 10px 20px; | |
cursor: pointer; | |
transition: background-color 0.3s ease; | |
} | |
.gr-button:hover { | |
background-color: #45a049; | |
} | |
.gr-slider input { | |
color: #4CAF50; | |
} | |
.gr-chat { | |
font-size: 16px; | |
} | |
#title { | |
text-align: center; | |
font-size: 2em; | |
margin-bottom: 20px; | |
color: #333; | |
} | |
""" | |
class UI_design(Base): | |
def __init__( | |
self, | |
*, | |
primary_hue: colors.Color | str = colors.emerald, | |
secondary_hue: colors.Color | str = colors.blue, | |
neutral_hue: colors.Color | str = colors.blue, | |
spacing_size: sizes.Size | str = sizes.spacing_md, | |
radius_size: sizes.Size | str = sizes.radius_md, | |
text_size: sizes.Size | str = sizes.text_lg, | |
font: fonts.Font | |
| str | |
| Iterable[fonts.Font | str] = ( | |
fonts.GoogleFont("Quicksand"), | |
"ui-sans-serif", | |
"sans-serif", | |
), | |
font_mono: fonts.Font | |
| str | |
| Iterable[fonts.Font | str] = ( | |
fonts.GoogleFont("IBM Plex Mono"), | |
"ui-monospace", | |
"monospace", | |
), | |
): | |
super().__init__( | |
primary_hue=primary_hue, | |
secondary_hue=secondary_hue, | |
neutral_hue=neutral_hue, | |
spacing_size=spacing_size, | |
radius_size=radius_size, | |
text_size=text_size, | |
font=font, | |
font_mono=font_mono, | |
) | |
super().set( | |
body_background_fill="repeating-linear-gradient(45deg, *primary_200, *primary_200 10px, *primary_50 10px, *primary_50 20px)", | |
body_background_fill_dark="repeating-linear-gradient(45deg, *primary_800, *primary_800 10px, *primary_900 10px, *primary_900 20px)", | |
button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)", | |
button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)", | |
button_primary_text_color="white", | |
button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)", | |
slider_color="*secondary_300", | |
slider_color_dark="*secondary_600", | |
block_title_text_weight="600", | |
block_border_width="3px", | |
block_shadow="*shadow_drop_lg", | |
button_shadow="*shadow_drop_lg", | |
button_large_padding="32px", | |
) | |
ui_design = UI_design() | |
# Define the interface | |
# with gr.Blocks(theme=ui_design) as demo: | |
with gr.Blocks(css=custom_css) as demo: | |
gr.Markdown("<h1 style='text-align: center;'> 😸 Meowthamatical AI Chatbot 😸</h1>") | |
gr.Markdown(" Welcome to the Cat & Math Chatbot! Whether you're here to sharpen your math skills or just enjoy some cat-themed fun, we're excited to make learning a little more pawsome!!") | |
# with gr.Row(): | |
# with gr.Column(): | |
# with gr.Tabs() as input_tabs: | |
# with gr.Tab("Sketch"): | |
# input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False) | |
# | |
# input_text = gr.Textbox(label="input your question") | |
# | |
# with gr.Row(): | |
# # with gr.Column(): | |
# # clear_btn = gr.ClearButton( | |
# # [input_sketchpad, input_text]) | |
# with gr.Column(): | |
# submit_btn = gr.Button("Submit", variant="primary") | |
with gr.Row(): | |
system_message = gr.Textbox(value="You are a friendly and playful cat who loves help users learn math.", label="System message", interactive=True) | |
use_local_model = gr.Checkbox(label="Use Local Model", value=False) | |
# button_1 = gr.Button("Submit", variant="primary") | |
with gr.Row(): | |
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") | |
chat_history = gr.Chatbot(label="Chat") | |
user_input = gr.Textbox(show_label=False, placeholder="Type your message here...") | |
cancel_button = gr.Button("Cancel Inference", variant="danger") | |
# Adjusted to ensure history is maintained and passed correctly | |
user_input.submit(respond, [user_input, chat_history, system_message, max_tokens, temperature, top_p, use_local_model], chat_history) | |
# user_input.submit(respond, | |
# [user_input, chat_history, system_message, 512, 0.8, 0.95, use_local_model], | |
# chat_history) | |
cancel_button.click(cancel_inference) | |
if __name__ == "__main__": | |
start_http_server(8000) # Expose metrics on port 8000 | |
demo.launch(share=False) # Remove share=True because it's not supported on HF Spaces | |