CCCDev commited on
Commit
ad5279e
·
verified ·
1 Parent(s): 2e1abdd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -2,19 +2,20 @@ import gradio as gr
2
  from langchain_community.document_loaders import PyPDFLoader
3
  from langchain.text_splitter import RecursiveCharacterTextSplitter
4
  from langchain_community.vectorstores import Chroma
5
- from langchain.chains import ConversationalRetrievalChain
6
  from langchain_community.embeddings import HuggingFaceEmbeddings
 
 
7
  from langchain.memory import ConversationBufferMemory
8
 
9
  from pathlib import Path
10
  import chromadb
11
  from unidecode import unidecode
12
 
13
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
14
  import re
15
 
16
  # Constants
17
- LLM_MODEL = "facebook/bart-large-cnn" # Changed to a model with larger response capabilities
18
  LLM_MAX_TOKEN = 512
19
  DB_CHUNK_SIZE = 512
20
  CHUNK_OVERLAP = 24
@@ -49,7 +50,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
49
 
50
  tokenizer = AutoTokenizer.from_pretrained(llm_model)
51
  model = AutoModelForSeq2SeqLM.from_pretrained(llm_model)
52
- pipe = pipeline("summarization", model=model, tokenizer=tokenizer)
53
 
54
  progress(0.75, desc="Defining buffer memory...")
55
  memory = ConversationBufferMemory(
 
2
  from langchain_community.document_loaders import PyPDFLoader
3
  from langchain.text_splitter import RecursiveCharacterTextSplitter
4
  from langchain_community.vectorstores import Chroma
 
5
  from langchain_community.embeddings import HuggingFaceEmbeddings
6
+ from langchain_huggingface import HuggingFacePipeline
7
+ from langchain.chains import ConversationalRetrievalChain
8
  from langchain.memory import ConversationBufferMemory
9
 
10
  from pathlib import Path
11
  import chromadb
12
  from unidecode import unidecode
13
 
14
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
15
  import re
16
 
17
  # Constants
18
+ LLM_MODEL = "facebook/bart-large-cnn" # Using a model with larger response capabilities
19
  LLM_MAX_TOKEN = 512
20
  DB_CHUNK_SIZE = 512
21
  CHUNK_OVERLAP = 24
 
50
 
51
  tokenizer = AutoTokenizer.from_pretrained(llm_model)
52
  model = AutoModelForSeq2SeqLM.from_pretrained(llm_model)
53
+ pipe = HuggingFacePipeline(pipeline("summarization", model=model, tokenizer=tokenizer))
54
 
55
  progress(0.75, desc="Defining buffer memory...")
56
  memory = ConversationBufferMemory(