Update app.py
Browse files
app.py
CHANGED
@@ -2,19 +2,20 @@ import gradio as gr
|
|
2 |
from langchain_community.document_loaders import PyPDFLoader
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
from langchain_community.vectorstores import Chroma
|
5 |
-
from langchain.chains import ConversationalRetrievalChain
|
6 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
7 |
from langchain.memory import ConversationBufferMemory
|
8 |
|
9 |
from pathlib import Path
|
10 |
import chromadb
|
11 |
from unidecode import unidecode
|
12 |
|
13 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
14 |
import re
|
15 |
|
16 |
# Constants
|
17 |
-
LLM_MODEL = "facebook/bart-large-cnn" #
|
18 |
LLM_MAX_TOKEN = 512
|
19 |
DB_CHUNK_SIZE = 512
|
20 |
CHUNK_OVERLAP = 24
|
@@ -49,7 +50,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
49 |
|
50 |
tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
51 |
model = AutoModelForSeq2SeqLM.from_pretrained(llm_model)
|
52 |
-
pipe = pipeline("summarization", model=model, tokenizer=tokenizer)
|
53 |
|
54 |
progress(0.75, desc="Defining buffer memory...")
|
55 |
memory = ConversationBufferMemory(
|
|
|
2 |
from langchain_community.document_loaders import PyPDFLoader
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
from langchain_community.vectorstores import Chroma
|
|
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain_huggingface import HuggingFacePipeline
|
7 |
+
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain.memory import ConversationBufferMemory
|
9 |
|
10 |
from pathlib import Path
|
11 |
import chromadb
|
12 |
from unidecode import unidecode
|
13 |
|
14 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
15 |
import re
|
16 |
|
17 |
# Constants
|
18 |
+
LLM_MODEL = "facebook/bart-large-cnn" # Using a model with larger response capabilities
|
19 |
LLM_MAX_TOKEN = 512
|
20 |
DB_CHUNK_SIZE = 512
|
21 |
CHUNK_OVERLAP = 24
|
|
|
50 |
|
51 |
tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
52 |
model = AutoModelForSeq2SeqLM.from_pretrained(llm_model)
|
53 |
+
pipe = HuggingFacePipeline(pipeline("summarization", model=model, tokenizer=tokenizer))
|
54 |
|
55 |
progress(0.75, desc="Defining buffer memory...")
|
56 |
memory = ConversationBufferMemory(
|