Update app.py
Browse files
app.py
CHANGED
@@ -3,18 +3,19 @@ from langchain_community.document_loaders import PyPDFLoader
|
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
from langchain_community.vectorstores import Chroma
|
5 |
from langchain.chains import ConversationalRetrievalChain
|
6 |
-
from
|
7 |
-
from langchain.chains import ConversationChain
|
8 |
from langchain.memory import ConversationBufferMemory
|
9 |
|
10 |
from pathlib import Path
|
11 |
import chromadb
|
12 |
from unidecode import unidecode
|
|
|
13 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
14 |
import re
|
15 |
|
16 |
# Constants
|
17 |
-
LLM_MODEL = "
|
|
|
18 |
DB_CHUNK_SIZE = 512
|
19 |
CHUNK_OVERLAP = 24
|
20 |
TEMPERATURE = 0.1
|
@@ -43,13 +44,12 @@ def create_db(splits, collection_name):
|
|
43 |
return vectordb
|
44 |
|
45 |
# Initialize langchain LLM chain
|
46 |
-
def initialize_llmchain(llm_model, vector_db, progress=gr.Progress()):
|
47 |
progress(0.5, desc="Initializing HF Hub...")
|
48 |
-
|
49 |
-
# Create the HuggingFacePipeline for the model
|
50 |
tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
51 |
model = AutoModelForSeq2SeqLM.from_pretrained(llm_model)
|
52 |
-
pipe = pipeline("
|
53 |
|
54 |
progress(0.75, desc="Defining buffer memory...")
|
55 |
memory = ConversationBufferMemory(
|
@@ -95,8 +95,8 @@ def initialize_database(pdf_url, chunk_size, chunk_overlap, progress=gr.Progress
|
|
95 |
progress(0.9, desc="Done!")
|
96 |
return vector_db, collection_name, "Complete!"
|
97 |
|
98 |
-
def initialize_LLM(vector_db, progress=gr.Progress()):
|
99 |
-
qa_chain = initialize_llmchain(LLM_MODEL, vector_db, progress)
|
100 |
return qa_chain, "Complete!"
|
101 |
|
102 |
def format_chat_history(message, chat_history):
|
@@ -165,7 +165,7 @@ def demo():
|
|
165 |
|
166 |
def auto_initialize():
|
167 |
vector_db, collection_name, db_status = initialize_database(pdf_url, DB_CHUNK_SIZE, CHUNK_OVERLAP)
|
168 |
-
qa_chain, llm_status = initialize_LLM(vector_db)
|
169 |
return vector_db, collection_name, db_status, qa_chain, llm_status, "Initialization complete."
|
170 |
|
171 |
demo.load(auto_initialize, [], [vector_db, collection_name, db_progress, qa_chain, llm_progress])
|
|
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
from langchain_community.vectorstores import Chroma
|
5 |
from langchain.chains import ConversationalRetrievalChain
|
6 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
7 |
from langchain.memory import ConversationBufferMemory
|
8 |
|
9 |
from pathlib import Path
|
10 |
import chromadb
|
11 |
from unidecode import unidecode
|
12 |
+
|
13 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
14 |
import re
|
15 |
|
16 |
# Constants
|
17 |
+
LLM_MODEL = "facebook/bart-large-cnn" # Changed to a model with larger response capabilities
|
18 |
+
LLM_MAX_TOKEN = 512
|
19 |
DB_CHUNK_SIZE = 512
|
20 |
CHUNK_OVERLAP = 24
|
21 |
TEMPERATURE = 0.1
|
|
|
44 |
return vectordb
|
45 |
|
46 |
# Initialize langchain LLM chain
|
47 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
48 |
progress(0.5, desc="Initializing HF Hub...")
|
49 |
+
|
|
|
50 |
tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
51 |
model = AutoModelForSeq2SeqLM.from_pretrained(llm_model)
|
52 |
+
pipe = pipeline("summarization", model=model, tokenizer=tokenizer)
|
53 |
|
54 |
progress(0.75, desc="Defining buffer memory...")
|
55 |
memory = ConversationBufferMemory(
|
|
|
95 |
progress(0.9, desc="Done!")
|
96 |
return vector_db, collection_name, "Complete!"
|
97 |
|
98 |
+
def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
99 |
+
qa_chain = initialize_llmchain(LLM_MODEL, llm_temperature, max_tokens, top_k, vector_db, progress)
|
100 |
return qa_chain, "Complete!"
|
101 |
|
102 |
def format_chat_history(message, chat_history):
|
|
|
165 |
|
166 |
def auto_initialize():
|
167 |
vector_db, collection_name, db_status = initialize_database(pdf_url, DB_CHUNK_SIZE, CHUNK_OVERLAP)
|
168 |
+
qa_chain, llm_status = initialize_LLM(TEMPERATURE, LLM_MAX_TOKEN, 20, vector_db)
|
169 |
return vector_db, collection_name, db_status, qa_chain, llm_status, "Initialization complete."
|
170 |
|
171 |
demo.load(auto_initialize, [], [vector_db, collection_name, db_progress, qa_chain, llm_progress])
|