Update app.py
Browse files
app.py
CHANGED
@@ -22,25 +22,16 @@ import tqdm
|
|
22 |
import accelerate
|
23 |
import re
|
24 |
|
25 |
-
|
26 |
-
static_pdf_link = "https://huggingface.co/spaces/CCCDev/PDFChat/resolve/main/Data-privacy-policy.pdf"
|
27 |
-
|
28 |
-
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
29 |
-
"mistralai/Mistral-7B-Instruct-v0.1", "google/gemma-7b-it", "google/gemma-2b-it",
|
30 |
-
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1",
|
31 |
-
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2",
|
32 |
-
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct",
|
33 |
-
"google/flan-t5-xxl"]
|
34 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
|
|
35 |
|
36 |
|
37 |
# Load PDF document and create doc splits
|
38 |
-
def load_doc(
|
39 |
-
loader = PyPDFLoader(
|
40 |
pages = loader.load()
|
41 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
42 |
-
chunk_size=chunk_size,
|
43 |
-
chunk_overlap=chunk_overlap)
|
44 |
doc_splits = text_splitter.split_documents(pages)
|
45 |
return doc_splits
|
46 |
|
@@ -60,44 +51,13 @@ def create_db(splits, collection_name):
|
|
60 |
|
61 |
# Initialize langchain LLM chain
|
62 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
63 |
-
progress(0.1, desc="Initializing HF tokenizer...")
|
64 |
-
|
65 |
progress(0.5, desc="Initializing HF Hub...")
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
load_in_8bit=True,
|
73 |
-
)
|
74 |
-
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1", "mosaicml/mpt-7b-instruct"]:
|
75 |
-
raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
|
76 |
-
elif llm_model == "microsoft/phi-2":
|
77 |
-
llm = HuggingFaceEndpoint(
|
78 |
-
repo_id=llm_model,
|
79 |
-
temperature=temperature,
|
80 |
-
max_new_tokens=max_tokens,
|
81 |
-
top_k=top_k,
|
82 |
-
trust_remote_code=True,
|
83 |
-
torch_dtype="auto",
|
84 |
-
)
|
85 |
-
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
86 |
-
llm = HuggingFaceEndpoint(
|
87 |
-
repo_id=llm_model,
|
88 |
-
temperature=temperature,
|
89 |
-
max_new_tokens=250,
|
90 |
-
top_k=top_k,
|
91 |
-
)
|
92 |
-
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
93 |
-
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
94 |
-
else:
|
95 |
-
llm = HuggingFaceEndpoint(
|
96 |
-
repo_id=llm_model,
|
97 |
-
temperature=temperature,
|
98 |
-
max_new_tokens=max_tokens,
|
99 |
-
top_k=top_k,
|
100 |
-
)
|
101 |
|
102 |
progress(0.75, desc="Defining buffer memory...")
|
103 |
memory = ConversationBufferMemory(
|
@@ -132,18 +92,14 @@ def create_collection_name(filepath):
|
|
132 |
collection_name = 'A' + collection_name[1:]
|
133 |
if not collection_name[-1].isalnum():
|
134 |
collection_name = collection_name[:-1] + 'Z'
|
135 |
-
print('Filepath: ', filepath)
|
136 |
-
print('Collection name: ', collection_name)
|
137 |
return collection_name
|
138 |
|
139 |
|
140 |
# Initialize database
|
141 |
-
def initialize_database(chunk_size, chunk_overlap, progress=gr.Progress()):
|
142 |
-
|
143 |
-
progress(0.1, desc="Creating collection name...")
|
144 |
-
collection_name = create_collection_name(file_path)
|
145 |
progress(0.25, desc="Loading document...")
|
146 |
-
doc_splits = load_doc(
|
147 |
progress(0.5, desc="Generating vector database...")
|
148 |
vector_db = create_db(doc_splits, collection_name)
|
149 |
progress(0.9, desc="Done!")
|
@@ -152,7 +108,6 @@ def initialize_database(chunk_size, chunk_overlap, progress=gr.Progress()):
|
|
152 |
|
153 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
154 |
llm_name = list_llm[llm_option]
|
155 |
-
print("llm_name: ", llm_name)
|
156 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
157 |
return qa_chain, "Complete!"
|
158 |
|
@@ -178,7 +133,6 @@ def conversation(qa_chain, message, history):
|
|
178 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
179 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
180 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
181 |
-
|
182 |
new_history = history + [(message, response_answer)]
|
183 |
return qa_chain, gr.update(
|
184 |
value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
@@ -200,72 +154,57 @@ def demo():
|
|
200 |
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
|
201 |
""")
|
202 |
|
203 |
-
with gr.Tab("Step
|
204 |
-
|
205 |
-
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value="ChromaDB", type="index",
|
206 |
-
info="Choose your vector database")
|
207 |
-
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
208 |
-
with gr.Row():
|
209 |
-
chunk_size = gr.Slider(64, 4096, value=512, step=32, label="Text chunk size",
|
210 |
-
info="Text length of each document chunk being embedded into the vector database. Default is 512.")
|
211 |
-
chunk_overlap = gr.Slider(0, 1024, value=24, step=8, label="Text chunk overlap",
|
212 |
-
info="Text overlap between each document chunk being embedded into the vector database. Default is 24.")
|
213 |
|
214 |
-
|
|
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
with gr.Accordion("Vector database collection details", open=False):
|
219 |
-
collection = gr.Textbox(label="Collection name", placeholder="", show_label=False)
|
220 |
|
221 |
-
with gr.Tab("Step
|
222 |
-
|
223 |
-
|
224 |
-
value="Mistral-7B-Instruct-v0.2",
|
225 |
-
info="Choose among the proposed open-source LLMs")
|
226 |
-
with gr.Accordion("Advanced LLM options", open=False):
|
227 |
with gr.Row():
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
with gr.Row():
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
clear.click(lambda: None, None, msg, queue=False)
|
268 |
-
|
269 |
return demo.queue().launch(debug=True)
|
270 |
|
271 |
|
|
|
22 |
import accelerate
|
23 |
import re
|
24 |
|
25 |
+
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
27 |
+
pdf_url = "path/to/your/static.pdf" # Replace with your static PDF URL or path
|
28 |
|
29 |
|
30 |
# Load PDF document and create doc splits
|
31 |
+
def load_doc(pdf_url, chunk_size, chunk_overlap):
|
32 |
+
loader = PyPDFLoader(pdf_url)
|
33 |
pages = loader.load()
|
34 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
|
|
|
|
35 |
doc_splits = text_splitter.split_documents(pages)
|
36 |
return doc_splits
|
37 |
|
|
|
51 |
|
52 |
# Initialize langchain LLM chain
|
53 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
|
|
|
|
54 |
progress(0.5, desc="Initializing HF Hub...")
|
55 |
+
llm = HuggingFaceEndpoint(
|
56 |
+
repo_id=llm_model,
|
57 |
+
temperature=temperature,
|
58 |
+
max_new_tokens=max_tokens,
|
59 |
+
top_k=top_k,
|
60 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
progress(0.75, desc="Defining buffer memory...")
|
63 |
memory = ConversationBufferMemory(
|
|
|
92 |
collection_name = 'A' + collection_name[1:]
|
93 |
if not collection_name[-1].isalnum():
|
94 |
collection_name = collection_name[:-1] + 'Z'
|
|
|
|
|
95 |
return collection_name
|
96 |
|
97 |
|
98 |
# Initialize database
|
99 |
+
def initialize_database(pdf_url, chunk_size, chunk_overlap, progress=gr.Progress()):
|
100 |
+
collection_name = create_collection_name(pdf_url)
|
|
|
|
|
101 |
progress(0.25, desc="Loading document...")
|
102 |
+
doc_splits = load_doc(pdf_url, chunk_size, chunk_overlap)
|
103 |
progress(0.5, desc="Generating vector database...")
|
104 |
vector_db = create_db(doc_splits, collection_name)
|
105 |
progress(0.9, desc="Done!")
|
|
|
108 |
|
109 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
110 |
llm_name = list_llm[llm_option]
|
|
|
111 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
112 |
return qa_chain, "Complete!"
|
113 |
|
|
|
133 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
134 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
135 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
|
|
136 |
new_history = history + [(message, response_answer)]
|
137 |
return qa_chain, gr.update(
|
138 |
value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
|
|
154 |
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
|
155 |
""")
|
156 |
|
157 |
+
with gr.Tab("Step 1 - Upload PDF"):
|
158 |
+
gr.Markdown("Using static PDF link: path/to/your/static.pdf")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
with gr.Tab("Step 2 - Process document"):
|
161 |
+
gr.Markdown("Processing document automatically...")
|
162 |
|
163 |
+
with gr.Tab("Step 3 - Initialize QA chain"):
|
164 |
+
gr.Markdown("Initializing QA chain automatically...")
|
|
|
|
|
165 |
|
166 |
+
with gr.Tab("Step 4 - Chatbot"):
|
167 |
+
chatbot = gr.Chatbot(height=300)
|
168 |
+
with gr.Accordion("Advanced - Document references", open=False):
|
|
|
|
|
|
|
169 |
with gr.Row():
|
170 |
+
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
171 |
+
source1_page = gr.Number(label="Page", scale=1)
|
172 |
+
with gr.Row():
|
173 |
+
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
174 |
+
source2_page = gr.Number(label="Page", scale=1)
|
175 |
+
with gr.Row():
|
176 |
+
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
177 |
+
source3_page = gr.Number(label="Page", scale=1)
|
|
|
178 |
with gr.Row():
|
179 |
+
msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
|
180 |
+
with gr.Row():
|
181 |
+
submit_btn = gr.Button("Submit message")
|
182 |
+
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
|
183 |
+
|
184 |
+
# Automatic preprocessing
|
185 |
+
db_progress = gr.Textbox(label="Vector database initialization", value="Initializing...")
|
186 |
+
db_btn = gr.Button("Generate vector database", visible=False)
|
187 |
+
qachain_btn = gr.Button("Initialize Question Answering chain", visible=False)
|
188 |
+
llm_progress = gr.Textbox(value="None", label="QA chain initialization")
|
189 |
+
|
190 |
+
def auto_initialize():
|
191 |
+
vector_db, collection_name, db_status = initialize_database(pdf_url, 512, 24)
|
192 |
+
qa_chain, llm_status = initialize_LLM(0, 0.1, 512, 20, vector_db)
|
193 |
+
return vector_db, collection_name, db_status, qa_chain, llm_status, "Initialization complete."
|
194 |
+
|
195 |
+
demo.load(auto_initialize, [], [vector_db, collection_name, db_progress, qa_chain, llm_progress])
|
196 |
+
|
197 |
+
# Chatbot events
|
198 |
+
msg.submit(conversation, \
|
199 |
+
inputs=[qa_chain, msg, chatbot], \
|
200 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3,
|
201 |
+
source3_page], \
|
202 |
+
queue=False)
|
203 |
+
submit_btn.click(conversation, \
|
204 |
+
inputs=[qa_chain, msg, chatbot], \
|
205 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page,
|
206 |
+
doc_source3, source3_page], \
|
207 |
+
queue=False)
|
|
|
|
|
208 |
return demo.queue().launch(debug=True)
|
209 |
|
210 |
|