|
|
|
|
|
|
|
from decorators import gpu_decorator |
|
|
|
|
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
import io |
|
from sympy import symbols, lambdify, sympify |
|
|
|
|
|
from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE |
|
|
|
|
|
model_path = MODEL_PATH |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained(model_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
from scipy.integrate import odeint |
|
from scipy.optimize import curve_fit |
|
from sklearn.metrics import mean_squared_error |
|
import seaborn as sns |
|
|
|
class BioprocessModel: |
|
def __init__(self): |
|
self.params = {} |
|
self.r2 = {} |
|
self.rmse = {} |
|
self.datax = [] |
|
self.datas = [] |
|
self.datap = [] |
|
self.dataxp = [] |
|
self.datasp = [] |
|
self.datapp = [] |
|
self.datax_std = [] |
|
self.datas_std = [] |
|
self.datap_std = [] |
|
self.models = {} |
|
|
|
@staticmethod |
|
def logistic(time, xo, xm, um): |
|
return (xo * np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) |
|
|
|
@staticmethod |
|
def substrate(time, so, p, q, xo, xm, um): |
|
return so - (p * xo * ((np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) - 1)) - \ |
|
(q * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time)))) |
|
|
|
@staticmethod |
|
def product(time, po, alpha, beta, xo, xm, um): |
|
return po + (alpha * xo * ((np.exp(um * time) / (1 - (xo / xm) * (1 - np.exp(um * time)))) - 1)) + \ |
|
(beta * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time)))) |
|
|
|
@staticmethod |
|
def logistic_diff(X, t, params): |
|
xo, xm, um = params |
|
dXdt = um * X * (1 - X / xm) |
|
return dXdt |
|
|
|
def substrate_diff(self, S, t, params, biomass_params, X_func): |
|
so, p, q = params |
|
xo, xm, um = biomass_params |
|
X_t = X_func(t) |
|
dSdt = -p * (um * X_t * (1 - X_t / xm)) - q * X_t |
|
return dSdt |
|
|
|
def product_diff(self, P, t, params, biomass_params, X_func): |
|
po, alpha, beta = params |
|
xo, xm, um = biomass_params |
|
X_t = X_func(t) |
|
dPdt = alpha * (um * X_t * (1 - X_t / xm)) + beta * X_t |
|
return dPdt |
|
|
|
def process_data(self, df): |
|
biomass_cols = [col for col in df.columns if 'Biomasa' in col] |
|
substrate_cols = [col for col in df.columns if 'Sustrato' in col] |
|
product_cols = [col for col in df.columns if 'Producto' in col] |
|
|
|
time_col = [col for col in df.columns if 'Tiempo' in col][0] |
|
time = df[time_col].values |
|
|
|
data_biomass = np.array([df[col].values for col in biomass_cols]) |
|
self.datax.append(data_biomass) |
|
self.dataxp.append(np.mean(data_biomass, axis=0)) |
|
self.datax_std.append(np.std(data_biomass, axis=0, ddof=1)) |
|
|
|
data_substrate = np.array([df[col].values for col in substrate_cols]) |
|
self.datas.append(data_substrate) |
|
self.datasp.append(np.mean(data_substrate, axis=0)) |
|
self.datas_std.append(np.std(data_substrate, axis=0, ddof=1)) |
|
|
|
data_product = np.array([df[col].values for col in product_cols]) |
|
self.datap.append(data_product) |
|
self.datapp.append(np.mean(data_product, axis=0)) |
|
self.datap_std.append(np.std(data_product, axis=0, ddof=1)) |
|
|
|
self.time = time |
|
|
|
def set_model(self, model_type, equation, params_str): |
|
""" |
|
Sets up the model based on the type, equation, and parameters. |
|
|
|
:param model_type: Type of the model ('biomass', 'substrate', 'product') |
|
:param equation: The equation as a string |
|
:param params_str: Comma-separated string of parameter names |
|
""" |
|
t_symbol = symbols('t') |
|
expr = sympify(equation) |
|
params = [param.strip() for param in params_str.split(',')] |
|
params_symbols = symbols(params) |
|
|
|
if model_type == 'biomass': |
|
|
|
func_expr = expr |
|
func = lambdify(t_symbol, func_expr, 'numpy') |
|
self.models['biomass'] = { |
|
'function': func, |
|
'params': params |
|
} |
|
elif model_type in ['substrate', 'product']: |
|
|
|
if 'biomass' not in self.models: |
|
raise ValueError("Biomass model must be set before substrate or product models.") |
|
biomass_func = self.models['biomass']['function'] |
|
func_expr = expr.subs('X(t)', biomass_func(t_symbol)) |
|
func = lambdify((t_symbol, *params_symbols), func_expr, 'numpy') |
|
self.models[model_type] = { |
|
'function': func, |
|
'params': params |
|
} |
|
else: |
|
raise ValueError(f"Unsupported model type: {model_type}") |
|
|
|
def fit_model(self, model_type, time, data, bounds=([-np.inf], [np.inf])): |
|
""" |
|
Fits the model to the data. |
|
|
|
:param model_type: Type of the model ('biomass', 'substrate', 'product') |
|
:param time: Time data |
|
:param data: Observed data to fit |
|
:param bounds: Bounds for the parameters |
|
:return: Predicted data from the model |
|
""" |
|
if model_type not in self.models: |
|
raise ValueError(f"Model type '{model_type}' is not set. Please use set_model first.") |
|
|
|
func = self.models[model_type]['function'] |
|
params = self.models[model_type]['params'] |
|
|
|
|
|
if model_type == 'biomass': |
|
def fit_func(t, *args): |
|
return func(t, *args) |
|
else: |
|
def fit_func(t, *args): |
|
return func(t, *args) |
|
|
|
popt, _ = curve_fit(fit_func, time, data, bounds=bounds, maxfev=10000) |
|
self.params[model_type] = {param: val for param, val in zip(params, popt)} |
|
y_pred = fit_func(time, *popt) |
|
self.r2[model_type] = 1 - (np.sum((data - y_pred) ** 2) / np.sum((data - np.mean(data)) ** 2)) |
|
self.rmse[model_type] = np.sqrt(mean_squared_error(data, y_pred)) |
|
return y_pred |
|
|
|
def plot_combined_results(self, time, biomass, substrate, product, |
|
y_pred_biomass, y_pred_substrate, y_pred_product, |
|
biomass_std=None, substrate_std=None, product_std=None, |
|
experiment_name='', legend_position='best', params_position='upper right', |
|
show_legend=True, show_params=True, |
|
style='whitegrid', line_color='#0000FF', point_color='#000000', |
|
line_style='-', marker_style='o'): |
|
sns.set_style(style) |
|
|
|
fig, ax1 = plt.subplots(figsize=(10, 7)) |
|
ax1.set_xlabel('Tiempo') |
|
ax1.set_ylabel('Biomasa', color=line_color) |
|
|
|
ax1.plot(time, biomass, marker=marker_style, linestyle='', color=point_color, label='Biomasa (Datos)') |
|
ax1.plot(time, y_pred_biomass, linestyle=line_style, color=line_color, label='Biomasa (Modelo)') |
|
ax1.tick_params(axis='y', labelcolor=line_color) |
|
|
|
ax2 = ax1.twinx() |
|
ax2.set_ylabel('Sustrato', color='green') |
|
ax2.plot(time, substrate, marker=marker_style, linestyle='', color='green', label='Sustrato (Datos)') |
|
ax2.plot(time, y_pred_substrate, linestyle=line_style, color='green', label='Sustrato (Modelo)') |
|
ax2.tick_params(axis='y', labelcolor='green') |
|
|
|
ax3 = ax1.twinx() |
|
ax3.spines["right"].set_position(("axes", 1.1)) |
|
ax3.set_ylabel('Producto', color='red') |
|
ax3.plot(time, product, marker=marker_style, linestyle='', color='red', label='Producto (Datos)') |
|
ax3.plot(time, y_pred_product, linestyle=line_style, color='red', label='Producto (Modelo)') |
|
ax3.tick_params(axis='y', labelcolor='red') |
|
|
|
fig.tight_layout() |
|
return fig |
|
|
|
|
|
|
|
|
|
|
|
|
|
@gpu_decorator(duration=300) |
|
def generate_analysis(prompt, max_length=1024, device=None): |
|
try: |
|
|
|
if device is None: |
|
device = torch.device('cpu') |
|
|
|
|
|
if next(model.parameters()).device != device: |
|
model.to(device) |
|
|
|
|
|
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device) |
|
max_gen_length = min(max_length + input_ids.size(1), model.config.max_position_embeddings) |
|
|
|
|
|
generated_ids = model.generate( |
|
input_ids=input_ids, |
|
max_length=max_gen_length, |
|
temperature=0.7, |
|
num_return_sequences=1, |
|
no_repeat_ngram_size=2, |
|
early_stopping=True |
|
) |
|
|
|
|
|
output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) |
|
analysis = output_text[len(prompt):].strip() |
|
return analysis |
|
except RuntimeError as e: |
|
return f"Error durante la ejecución: {str(e)}" |
|
except Exception as e: |
|
return f"Ocurrió un error durante el análisis: {e}" |
|
|
|
def parse_bounds(bounds_str, num_params): |
|
try: |
|
bounds = eval(f"[{bounds_str}]") |
|
if len(bounds) != num_params: |
|
raise ValueError |
|
lower_bounds = [b[0] for b in bounds] |
|
upper_bounds = [b[1] for b in bounds] |
|
return lower_bounds, upper_bounds |
|
except: |
|
lower_bounds = [-np.inf] * num_params |
|
upper_bounds = [np.inf] * num_params |
|
return lower_bounds, upper_bounds |
|
|
|
def process_and_plot( |
|
file, |
|
biomass_eq1, biomass_eq2, biomass_eq3, |
|
biomass_param1, biomass_param2, biomass_param3, |
|
biomass_bound1, biomass_bound2, biomass_bound3, |
|
substrate_eq1, substrate_eq2, substrate_eq3, |
|
substrate_param1, substrate_param2, substrate_param3, |
|
substrate_bound1, substrate_bound2, substrate_bound3, |
|
product_eq1, product_eq2, product_eq3, |
|
product_param1, product_param2, product_param3, |
|
product_bound1, product_bound2, product_bound3, |
|
legend_position, |
|
show_legend, |
|
show_params, |
|
biomass_eq_count, |
|
substrate_eq_count, |
|
product_eq_count, |
|
device=None |
|
): |
|
|
|
df = pd.read_excel(file.name) |
|
|
|
|
|
expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto'] |
|
for col in expected_columns: |
|
if col not in df.columns: |
|
raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.") |
|
|
|
|
|
time = df['Tiempo'].values |
|
biomass_data = df['Biomasa'].values |
|
substrate_data = df['Sustrato'].values |
|
product_data = df['Producto'].values |
|
|
|
|
|
biomass_eq_count = int(biomass_eq_count) |
|
substrate_eq_count = int(substrate_eq_count) |
|
product_eq_count = int(product_eq_count) |
|
|
|
|
|
biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count] |
|
biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count] |
|
biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count] |
|
|
|
substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count] |
|
substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count] |
|
substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count] |
|
|
|
product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count] |
|
product_params = [product_param1, product_param2, product_param3][:product_eq_count] |
|
product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count] |
|
|
|
biomass_results = [] |
|
substrate_results = [] |
|
product_results = [] |
|
|
|
|
|
for i in range(len(biomass_eqs)): |
|
equation = biomass_eqs[i] |
|
params_str = biomass_params[i] |
|
bounds_str = biomass_bounds[i] |
|
|
|
model = BioprocessModel() |
|
model.set_model('biomass', equation, params_str) |
|
|
|
params = [param.strip() for param in params_str.split(',')] |
|
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params)) |
|
|
|
y_pred = model.fit_model( |
|
'biomass', time, biomass_data, |
|
bounds=(lower_bounds, upper_bounds) |
|
) |
|
biomass_results.append({ |
|
'model': model, |
|
'y_pred': y_pred, |
|
'equation': equation |
|
}) |
|
|
|
|
|
biomass_model = biomass_results[0]['model'] |
|
biomass_params_values = list(biomass_model.params['biomass'].values()) |
|
biomass_func = biomass_model.models['biomass']['function'] |
|
|
|
|
|
for i in range(len(substrate_eqs)): |
|
equation = substrate_eqs[i] |
|
params_str = substrate_params[i] |
|
bounds_str = substrate_bounds[i] |
|
|
|
model = BioprocessModel() |
|
model.set_model('substrate', equation, params_str) |
|
|
|
params = model.models['substrate']['params'] |
|
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params)) |
|
|
|
y_pred = model.fit_model( |
|
'substrate', time, substrate_data, |
|
bounds=(lower_bounds, upper_bounds) |
|
) |
|
substrate_results.append({ |
|
'model': model, |
|
'y_pred': y_pred, |
|
'equation': equation |
|
}) |
|
|
|
|
|
for i in range(len(product_eqs)): |
|
equation = product_eqs[i] |
|
params_str = product_params[i] |
|
bounds_str = product_bounds[i] |
|
|
|
model = BioprocessModel() |
|
model.set_model('product', equation, params_str) |
|
|
|
params = model.models['product']['params'] |
|
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params)) |
|
|
|
y_pred = model.fit_model( |
|
'product', time, product_data, |
|
bounds=(lower_bounds, upper_bounds) |
|
) |
|
product_results.append({ |
|
'model': model, |
|
'y_pred': y_pred, |
|
'equation': equation |
|
}) |
|
|
|
|
|
fig, axs = plt.subplots(3, 1, figsize=(10, 15)) |
|
|
|
|
|
axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa') |
|
for i, result in enumerate(biomass_results): |
|
axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}') |
|
axs[0].set_xlabel('Tiempo') |
|
axs[0].set_ylabel('Biomasa') |
|
if show_legend: |
|
axs[0].legend(loc=legend_position) |
|
|
|
|
|
axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato') |
|
for i, result in enumerate(substrate_results): |
|
axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}') |
|
axs[1].set_xlabel('Tiempo') |
|
axs[1].set_ylabel('Sustrato') |
|
if show_legend: |
|
axs[1].legend(loc=legend_position) |
|
|
|
|
|
axs[2].plot(time, product_data, 'o', label='Datos de Producto') |
|
for i, result in enumerate(product_results): |
|
axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}') |
|
axs[2].set_xlabel('Tiempo') |
|
axs[2].set_ylabel('Producto') |
|
if show_legend: |
|
axs[2].legend(loc=legend_position) |
|
|
|
plt.tight_layout() |
|
buf = io.BytesIO() |
|
plt.savefig(buf, format='png') |
|
buf.seek(0) |
|
image = Image.open(buf) |
|
|
|
prompt = f""" |
|
Eres un experto en modelado de bioprocesos. |
|
|
|
Analiza los siguientes resultados experimentales y proporciona un veredicto sobre la calidad de los modelos, sugiriendo mejoras si es necesario. |
|
|
|
Biomasa: |
|
{biomass_results} |
|
|
|
Sustrato: |
|
{substrate_results} |
|
|
|
Producto: |
|
{product_results} |
|
""" |
|
analysis = generate_analysis(prompt, device=device) |
|
|
|
return [image], analysis |
|
|