ByteBlaze's picture
Update app.py
1512feb verified
raw
history blame
909 Bytes
import gradio as gr
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
import joblib
vectorizer = joblib.load('./vectorizer.pkl')
nb_classifier = joblib.load('./nb_classifier.pkl')
tfidf_vectorizer = joblib.load('./tfidf_vectorizer.pkl')
random_forest = joblib.load('./random_forest.pkl')
def classify(text,choice):
corpus=[text]
features = vectorizer.transform(corpus).toarray()
if(choice == 1):
prediction = nb_classifier.predict(features)
elif(choice == 2):
prediction = random_forest.predict(features)
if(prediction == 1):
return "Fake News"
else:
return "Not Fake News"
GUI = gr.Interface(inputs = ['text',gr.radio(choices = [('Naive Bayes',1),'(Random Classifier',2)], value = 1, label = "Model") ], outputs = ['text'], fn = classify, title = "Fake News Detection System")
GUI.launch(debug = True)