Spaces:
No application file
No application file
import streamlit as st #deployment | |
from langchain.chains.llm import LLMChain #individual chain | |
from langchain.chains.sequential import SequentialChain #combine chains | |
from langchain_groq import ChatGroq # llm model | |
from langchain.prompts import PromptTemplate #prompt for query | |
st.title('LEADER DATABASE') #title | |
leader_name=st.text_input('Enter The Famous leader_name from India.') | |
sub=st.button('SUBMIT') | |
LLM_model=ChatGroq(temperature=0.6, | |
groq_api_key='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') | |
prompt1=PromptTemplate(input=['A'], | |
template='tell me about {A} in 20 words.') | |
chain1=LLMChain(llm=LLM_model,prompt=prompt1,output_key='person') | |
prompt2=PromptTemplate(input=['person'], | |
template='what is date of birth of this {person}.') | |
chain2=LLMChain(llm=LLM_model,prompt=prompt2,output_key='dob') | |
prompt3=PromptTemplate(input=['dob'], | |
template='mention how many time win elections {dob}.') | |
chain3=LLMChain(llm=LLM_model,prompt=prompt3,output_key='election win') | |
#combine all the chains in sequence | |
parent=SequentialChain(chains=[chain1,chain2,chain3], | |
input_variables=['A'], | |
output_variables=['person','dob','election win'] | |
) |