import streamlit as st #deployment from langchain.chains.llm import LLMChain #individual chain from langchain.chains.sequential import SequentialChain #combine chains from langchain_groq import ChatGroq # llm model from langchain.prompts import PromptTemplate #prompt for query st.title('LEADER DATABASE') #title leader_name=st.text_input('Enter The Famous leader_name from India.') sub=st.button('SUBMIT') LLM_model=ChatGroq(temperature=0.6, groq_api_key='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') prompt1=PromptTemplate(input=['A'], template='tell me about {A} in 20 words.') chain1=LLMChain(llm=LLM_model,prompt=prompt1,output_key='person') prompt2=PromptTemplate(input=['person'], template='what is date of birth of this {person}.') chain2=LLMChain(llm=LLM_model,prompt=prompt2,output_key='dob') prompt3=PromptTemplate(input=['dob'], template='mention how many time win elections {dob}.') chain3=LLMChain(llm=LLM_model,prompt=prompt3,output_key='election win') #combine all the chains in sequence parent=SequentialChain(chains=[chain1,chain2,chain3], input_variables=['A'], output_variables=['person','dob','election win'] )