HVAC / pages /cooling_calculator.py
mabuseif's picture
Upload 13 files
a1d7129 verified
"""
Cooling Load Calculator Page
This module implements the cooling load calculator interface for the HVAC Load Calculator web application.
It provides a step-by-step form for inputting building information and calculates cooling loads
using the ASHRAE method.
"""
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import json
import os
import sys
from pathlib import Path
from datetime import datetime
# Add the parent directory to sys.path to import modules
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# Import custom modules
from cooling_load import CoolingLoadCalculator
from reference_data import ReferenceData
from utils.validation import validate_input, ValidationWarning
from utils.export import export_data
def load_session_state():
"""Initialize or load session state variables."""
# Initialize session state for form data
if 'cooling_form_data' not in st.session_state:
st.session_state.cooling_form_data = {
'building_info': {},
'building_envelope': {},
'windows': {},
'internal_loads': {},
'ventilation': {},
'results': {}
}
# Initialize session state for validation warnings
if 'cooling_warnings' not in st.session_state:
st.session_state.cooling_warnings = {
'building_info': [],
'building_envelope': [],
'windows': [],
'internal_loads': [],
'ventilation': []
}
# Initialize session state for form completion status
if 'cooling_completed' not in st.session_state:
st.session_state.cooling_completed = {
'building_info': False,
'building_envelope': False,
'windows': False,
'internal_loads': False,
'ventilation': False
}
# Initialize session state for calculation results
if 'cooling_results' not in st.session_state:
st.session_state.cooling_results = None
def building_info_form(ref_data):
"""
Form for building information.
Args:
ref_data: Reference data object
"""
st.subheader("Building Information")
st.write("Enter general building information, location, and design temperatures.")
# Get location options from reference data
location_options = {loc_id: loc_data['name'] for loc_id, loc_data in ref_data.locations.items()}
col1, col2 = st.columns(2)
with col1:
# Building name
building_name = st.text_input(
"Building Name",
value=st.session_state.cooling_form_data['building_info'].get('building_name', ''),
help="Enter a name for this building or project"
)
# Location selection
location = st.selectbox(
"Location",
options=list(location_options.keys()),
format_func=lambda x: location_options[x],
index=list(location_options.keys()).index(st.session_state.cooling_form_data['building_info'].get('location', 'sydney')) if st.session_state.cooling_form_data['building_info'].get('location') in location_options else 0,
help="Select the location of the building"
)
# Get climate data for selected location
location_data = ref_data.get_location_data(location)
# Indoor design temperature
indoor_temp = st.number_input(
"Indoor Design Temperature (°C)",
value=float(st.session_state.cooling_form_data['building_info'].get('indoor_temp', 24.0)),
min_value=18.0,
max_value=30.0,
step=0.5,
help="Recommended indoor design temperature for cooling is 24°C"
)
with col2:
# Building type
building_type = st.selectbox(
"Building Type",
options=["Residential", "Small Office", "Educational", "Other"],
index=["Residential", "Small Office", "Educational", "Other"].index(st.session_state.cooling_form_data['building_info'].get('building_type', 'Residential')),
help="Select the type of building"
)
# Outdoor design temperature (with default from location data)
outdoor_temp = st.number_input(
"Outdoor Design Temperature (°C)",
value=float(st.session_state.cooling_form_data['building_info'].get('outdoor_temp', location_data['summer_design_temp'])),
min_value=25.0,
max_value=45.0,
step=0.5,
help=f"Default value is based on selected location ({location_data['name']})"
)
# Daily temperature range
daily_range_options = {
"low": "Low (< 8.5°C)",
"medium": "Medium (8.5-14°C)",
"high": "High (> 14°C)"
}
daily_range = st.selectbox(
"Daily Temperature Range",
options=list(daily_range_options.keys()),
format_func=lambda x: daily_range_options[x],
index=list(daily_range_options.keys()).index(st.session_state.cooling_form_data['building_info'].get('daily_range', location_data['daily_temp_range'])),
help="Daily temperature range affects solar heat gain calculations"
)
# Building dimensions
st.subheader("Building Dimensions")
col1, col2, col3 = st.columns(3)
with col1:
length = st.number_input(
"Length (m)",
value=float(st.session_state.cooling_form_data['building_info'].get('length', 10.0)),
min_value=1.0,
step=0.1,
help="Building length in meters"
)
with col2:
width = st.number_input(
"Width (m)",
value=float(st.session_state.cooling_form_data['building_info'].get('width', 8.0)),
min_value=1.0,
step=0.1,
help="Building width in meters"
)
with col3:
height = st.number_input(
"Height (m)",
value=float(st.session_state.cooling_form_data['building_info'].get('height', 2.7)),
min_value=1.0,
step=0.1,
help="Floor-to-ceiling height in meters"
)
# Calculate floor area and volume
floor_area = length * width
volume = floor_area * height
st.info(f"Floor Area: {floor_area:.2f} m² | Volume: {volume:.2f} m³")
# Save form data to session state
form_data = {
'building_name': building_name,
'building_type': building_type,
'location': location,
'location_name': location_data['name'],
'indoor_temp': indoor_temp,
'outdoor_temp': outdoor_temp,
'daily_range': daily_range,
'length': length,
'width': width,
'height': height,
'floor_area': floor_area,
'volume': volume,
'temp_diff': outdoor_temp - indoor_temp
}
# Validate inputs
warnings = []
# Check if building name is provided
if not building_name:
warnings.append(ValidationWarning("Building name is empty", "Consider adding a building name for reference"))
# Check if temperature difference is reasonable
if form_data['temp_diff'] <= 0:
warnings.append(ValidationWarning(
"Invalid temperature difference",
"Outdoor temperature should be higher than indoor temperature for cooling load calculation",
is_critical=False # Changed to non-critical to allow proceeding with warnings
))
# Check if dimensions are reasonable
if floor_area > 500:
warnings.append(ValidationWarning(
"Large floor area",
"Floor area exceeds 500 m², verify if this is correct for a residential building"
))
if height < 2.4 or height > 3.5:
warnings.append(ValidationWarning(
"Unusual ceiling height",
"Typical residential ceiling heights are between 2.4m and 3.5m"
))
# Save warnings to session state
st.session_state.cooling_warnings['building_info'] = warnings
# Display warnings if any
if warnings:
st.warning("Please review the following warnings:")
for warning in warnings:
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
st.write(f" Suggestion: {warning.suggestion}")
# Save form data regardless of warnings
st.session_state.cooling_form_data['building_info'] = form_data
# Mark this step as completed if there are no critical warnings
st.session_state.cooling_completed['building_info'] = not any(w.is_critical for w in warnings)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col2:
next_button = st.button("Next: Building Envelope →", key="building_info_next")
if next_button:
st.session_state.cooling_active_tab = "building_envelope"
st.experimental_rerun()
def building_envelope_form(ref_data):
"""
Form for building envelope information.
Args:
ref_data: Reference data object
"""
st.subheader("Building Envelope")
st.write("Enter information about walls, roof, and floor construction.")
# Get building dimensions from previous step
building_info = st.session_state.cooling_form_data['building_info']
length = building_info.get('length', 10.0)
width = building_info.get('width', 8.0)
height = building_info.get('height', 2.7)
temp_diff = building_info.get('temp_diff', 11.0)
# Calculate default areas
default_wall_area = 2 * (length + width) * height
default_roof_area = length * width
default_floor_area = length * width
# Initialize envelope data if not already in session state
if 'walls' not in st.session_state.cooling_form_data['building_envelope']:
st.session_state.cooling_form_data['building_envelope']['walls'] = []
if 'roof' not in st.session_state.cooling_form_data['building_envelope']:
st.session_state.cooling_form_data['building_envelope']['roof'] = {}
if 'floor' not in st.session_state.cooling_form_data['building_envelope']:
st.session_state.cooling_form_data['building_envelope']['floor'] = {}
# Walls section
st.write("### Walls")
# Get wall material options from reference data
wall_material_options = {mat_id: mat_data['name'] for mat_id, mat_data in ref_data.materials['walls'].items()}
# Add custom option
wall_material_options["custom_walls"] = "Custom Wall (User-defined)"
# Display existing wall entries
if st.session_state.cooling_form_data['building_envelope']['walls']:
st.write("Current walls:")
walls_df = pd.DataFrame(st.session_state.cooling_form_data['building_envelope']['walls'])
walls_df['Material'] = walls_df['material_id'].map(lambda x: wall_material_options.get(x, "Unknown"))
# Add orientation column with default value if not present
walls_df['orientation'] = walls_df['orientation'].fillna('not specified')
walls_df = walls_df[['name', 'Material', 'area', 'u_value', 'orientation']]
walls_df.columns = ['Name', 'Material', 'Area (m²)', 'U-Value (W/m²°C)', 'Orientation']
st.dataframe(walls_df)
# Add new wall form
st.write("Add a new wall:")
col1, col2 = st.columns(2)
with col1:
wall_name = st.text_input("Wall Name", value="", key="new_wall_name")
wall_material = st.selectbox(
"Wall Material",
options=list(wall_material_options.keys()),
format_func=lambda x: wall_material_options[x],
key="new_wall_material"
)
# Add wall orientation selection
wall_orientation = st.selectbox(
"Wall Orientation",
options=["north", "east", "south", "west"],
key="new_wall_orientation"
)
# Get material properties
material_data = ref_data.get_material_by_type("walls", wall_material)
u_value = material_data['u_value']
# Add custom U-value input if custom material is selected
if wall_material == "custom_walls":
u_value = st.number_input(
"Custom U-Value (W/m²°C)",
value=1.0,
min_value=0.1,
max_value=5.0,
step=0.1,
key="custom_wall_u_value"
)
# Store custom material in session state
if "custom_materials" not in st.session_state:
st.session_state.custom_materials = {}
st.session_state.custom_materials["walls"] = {
"name": "Custom Wall",
"u_value": u_value,
"r_value": 1.0 / u_value if u_value > 0 else 1.0,
"description": "Custom wall with user-defined properties"
}
with col2:
wall_area = st.number_input(
"Wall Area (m²)",
value=default_wall_area / 4, # Default to 1/4 of total wall area as a starting point
min_value=0.1,
step=0.1,
key="new_wall_area"
)
st.write(f"Material U-Value: {u_value} W/m²°C")
st.write(f"Heat Transfer: {u_value * wall_area * temp_diff:.2f} W")
# Add wall button
if st.button("Add Wall"):
new_wall = {
'name': wall_name if wall_name else f"Wall {len(st.session_state.cooling_form_data['building_envelope']['walls']) + 1}",
'material_id': wall_material,
'area': wall_area,
'u_value': u_value,
'temp_diff': temp_diff,
'orientation': wall_orientation # Add orientation to wall data
}
st.session_state.cooling_form_data['building_envelope']['walls'].append(new_wall)
st.experimental_rerun()
# Roof section
st.write("### Roof")
# Get roof material options from reference data
roof_material_options = {mat_id: mat_data['name'] for mat_id, mat_data in ref_data.materials['roofs'].items()}
# Add custom option
roof_material_options["custom_roofs"] = "Custom Roof (User-defined)"
col1, col2 = st.columns(2)
with col1:
roof_material = st.selectbox(
"Roof Material",
options=list(roof_material_options.keys()),
format_func=lambda x: roof_material_options[x],
index=list(roof_material_options.keys()).index(st.session_state.cooling_form_data['building_envelope'].get('roof', {}).get('material_id', 'metal_deck_insulated')) if st.session_state.cooling_form_data['building_envelope'].get('roof', {}).get('material_id') in roof_material_options else 0
)
# Get material properties
material_data = ref_data.get_material_by_type("roofs", roof_material)
roof_u_value = material_data['u_value']
# Add custom U-value input if custom material is selected
if roof_material == "custom_roofs":
roof_u_value = st.number_input(
"Custom Roof U-Value (W/m²°C)",
value=1.0,
min_value=0.1,
max_value=5.0,
step=0.1,
key="custom_roof_u_value"
)
# Store custom material in session state
if "custom_materials" not in st.session_state:
st.session_state.custom_materials = {}
st.session_state.custom_materials["roofs"] = {
"name": "Custom Roof",
"u_value": roof_u_value,
"r_value": 1.0 / roof_u_value if roof_u_value > 0 else 1.0,
"description": "Custom roof with user-defined properties"
}
with col2:
roof_area = st.number_input(
"Roof Area (m²)",
value=float(st.session_state.cooling_form_data['building_envelope'].get('roof', {}).get('area', default_roof_area)),
min_value=0.1,
step=0.1
)
st.write(f"Material U-Value: {roof_u_value} W/m²°C")
st.write(f"Heat Transfer: {roof_u_value * roof_area * temp_diff:.2f} W")
# Save roof data
st.session_state.cooling_form_data['building_envelope']['roof'] = {
'material_id': roof_material,
'area': roof_area,
'u_value': roof_u_value,
'temp_diff': temp_diff
}
# Floor section
st.write("### Floor")
# Get floor material options from reference data
floor_material_options = {mat_id: mat_data['name'] for mat_id, mat_data in ref_data.materials['floors'].items()}
# Add custom option
floor_material_options["custom_floors"] = "Custom Floor (User-defined)"
col1, col2 = st.columns(2)
with col1:
floor_material = st.selectbox(
"Floor Material",
options=list(floor_material_options.keys()),
format_func=lambda x: floor_material_options[x],
index=list(floor_material_options.keys()).index(st.session_state.cooling_form_data['building_envelope'].get('floor', {}).get('material_id', 'concrete_slab_ground')) if st.session_state.cooling_form_data['building_envelope'].get('floor', {}).get('material_id') in floor_material_options else 0
)
# Get material properties
material_data = ref_data.get_material_by_type("floors", floor_material)
floor_u_value = material_data['u_value']
# Add custom U-value input if custom material is selected
if floor_material == "custom_floors":
floor_u_value = st.number_input(
"Custom Floor U-Value (W/m²°C)",
value=1.0,
min_value=0.1,
max_value=5.0,
step=0.1,
key="custom_floor_u_value"
)
# Store custom material in session state
if "custom_materials" not in st.session_state:
st.session_state.custom_materials = {}
st.session_state.custom_materials["floors"] = {
"name": "Custom Floor",
"u_value": floor_u_value,
"r_value": 1.0 / floor_u_value if floor_u_value > 0 else 1.0,
"description": "Custom floor with user-defined properties"
}
with col2:
floor_area = st.number_input(
"Floor Area (m²)",
value=float(st.session_state.cooling_form_data['building_envelope'].get('floor', {}).get('area', default_floor_area)),
min_value=0.1,
step=0.1
)
st.write(f"Material U-Value: {floor_u_value} W/m²°C")
st.write(f"Heat Transfer: {floor_u_value * floor_area * temp_diff:.2f} W")
# Save floor data
st.session_state.cooling_form_data['building_envelope']['floor'] = {
'material_id': floor_material,
'area': floor_area,
'u_value': floor_u_value,
'temp_diff': temp_diff
}
# Validate inputs
warnings = []
# Check if walls are defined
if not st.session_state.cooling_form_data['building_envelope']['walls']:
warnings.append(ValidationWarning(
"No walls defined",
"Add at least one wall to continue",
is_critical=False # Changed to non-critical to allow proceeding with warnings
))
# Check if total wall area is reasonable
total_wall_area = sum(wall['area'] for wall in st.session_state.cooling_form_data['building_envelope']['walls'])
expected_wall_area = 2 * (length + width) * height
if total_wall_area < expected_wall_area * 0.8 or total_wall_area > expected_wall_area * 1.2:
warnings.append(ValidationWarning(
"Unusual wall area",
f"Total wall area ({total_wall_area:.2f} m²) differs significantly from the expected area ({expected_wall_area:.2f} m²) based on building dimensions"
))
# Check if roof area matches floor area
if abs(roof_area - floor_area) > 1.0:
warnings.append(ValidationWarning(
"Roof area doesn't match floor area",
"For a simple building, roof area should approximately match floor area"
))
# Save warnings to session state
st.session_state.cooling_warnings['building_envelope'] = warnings
# Display warnings if any
if warnings:
st.warning("Please review the following warnings:")
for warning in warnings:
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
st.write(f" Suggestion: {warning.suggestion}")
# Mark this step as completed if there are no critical warnings
st.session_state.cooling_completed['building_envelope'] = not any(w.is_critical for w in warnings)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col1:
prev_button = st.button("← Back: Building Information", key="building_envelope_prev")
if prev_button:
st.session_state.cooling_active_tab = "building_info"
st.experimental_rerun()
with col2:
next_button = st.button("Next: Windows & Doors →", key="building_envelope_next")
if next_button:
st.session_state.cooling_active_tab = "windows"
st.experimental_rerun()
def windows_form(ref_data):
"""
Form for windows and doors information.
Args:
ref_data: Reference data object
"""
st.subheader("Windows & Doors")
st.write("Enter information about windows and doors.")
# Get temperature difference from building info
temp_diff = st.session_state.cooling_form_data['building_info'].get('temp_diff', 11.0)
daily_range = st.session_state.cooling_form_data['building_info'].get('daily_range', 'medium')
# Initialize windows data if not already in session state
if 'windows' not in st.session_state.cooling_form_data['windows']:
st.session_state.cooling_form_data['windows']['windows'] = []
if 'doors' not in st.session_state.cooling_form_data['windows']:
st.session_state.cooling_form_data['windows']['doors'] = []
# Windows section
st.write("### Windows")
# Get glass type options from reference data
glass_type_options = {glass_id: glass_data['name'] for glass_id, glass_data in ref_data.glass_types.items()}
# Get shading options from reference data
shading_options = {shade_id: shade_data['name'] for shade_id, shade_data in ref_data.shading_factors.items()}
# Display existing window entries
if st.session_state.cooling_form_data['windows']['windows']:
st.write("Current windows:")
windows_df = pd.DataFrame(st.session_state.cooling_form_data['windows']['windows'])
windows_df['Glass Type'] = windows_df['glass_type'].map(lambda x: glass_type_options.get(x, "Unknown"))
windows_df['Shading'] = windows_df['shading'].map(lambda x: shading_options.get(x, "Unknown"))
windows_df = windows_df[['name', 'orientation', 'Glass Type', 'Shading', 'area', 'u_value']]
windows_df.columns = ['Name', 'Orientation', 'Glass Type', 'Shading', 'Area (m²)', 'U-Value (W/m²°C)']
st.dataframe(windows_df)
# Add new window form
st.write("Add a new window:")
col1, col2 = st.columns(2)
with col1:
window_name = st.text_input("Window Name", value="", key="new_window_name")
orientation = st.selectbox(
"Orientation",
options=["north", "east", "south", "west", "horizontal"],
key="new_window_orientation"
)
glass_type = st.selectbox(
"Glass Type",
options=list(glass_type_options.keys()),
format_func=lambda x: glass_type_options[x],
key="new_window_glass_type"
)
# Get glass properties
glass_data = ref_data.get_glass_type(glass_type)
window_u_value = glass_data['u_value']
with col2:
window_area = st.number_input(
"Window Area (m²)",
value=2.0,
min_value=0.1,
step=0.1,
key="new_window_area"
)
shading = st.selectbox(
"Shading",
options=list(shading_options.keys()),
format_func=lambda x: shading_options[x],
key="new_window_shading"
)
# Get shading factor
shading_data = ref_data.get_shading_factor(shading)
shade_factor = shading_data['factor']
st.write(f"Glass U-Value: {window_u_value} W/m²°C")
st.write(f"Conduction Heat Transfer: {window_u_value * window_area * temp_diff:.2f} W")
# Add window button
if st.button("Add Window"):
# Calculate solar heat gain factor
calculator = CoolingLoadCalculator()
shgf = calculator.get_solar_heat_gain_factor(
orientation=orientation,
glass_type=glass_type,
daily_range=daily_range
)
new_window = {
'name': window_name if window_name else f"Window {len(st.session_state.cooling_form_data['windows']['windows']) + 1}",
'orientation': orientation,
'glass_type': glass_type,
'shading': shading,
'area': window_area,
'u_value': window_u_value,
'shgf': shgf,
'shade_factor': shade_factor,
'temp_diff': temp_diff
}
st.session_state.cooling_form_data['windows']['windows'].append(new_window)
st.experimental_rerun()
# Doors section
st.write("### Doors")
# Display existing door entries
if st.session_state.cooling_form_data['windows']['doors']:
st.write("Current doors:")
doors_df = pd.DataFrame(st.session_state.cooling_form_data['windows']['doors'])
doors_df = doors_df[['name', 'type', 'area', 'u_value']]
doors_df.columns = ['Name', 'Type', 'Area (m²)', 'U-Value (W/m²°C)']
st.dataframe(doors_df)
# Add new door form
st.write("Add a new door:")
col1, col2 = st.columns(2)
with col1:
door_name = st.text_input("Door Name", value="", key="new_door_name")
door_type = st.selectbox(
"Door Type",
options=["Solid wood", "Hollow core", "Glass", "Insulated"],
key="new_door_type"
)
# Set U-value based on door type
door_u_values = {
"Solid wood": 2.0,
"Hollow core": 2.5,
"Glass": 5.0,
"Insulated": 1.2
}
door_u_value = door_u_values[door_type]
with col2:
door_area = st.number_input(
"Door Area (m²)",
value=2.0,
min_value=0.1,
step=0.1,
key="new_door_area"
)
st.write(f"Door U-Value: {door_u_value} W/m²°C")
st.write(f"Heat Transfer: {door_u_value * door_area * temp_diff:.2f} W")
# Add door button
if st.button("Add Door"):
new_door = {
'name': door_name if door_name else f"Door {len(st.session_state.cooling_form_data['windows']['doors']) + 1}",
'type': door_type,
'area': door_area,
'u_value': door_u_value,
'temp_diff': temp_diff
}
st.session_state.cooling_form_data['windows']['doors'].append(new_door)
st.experimental_rerun()
# Validate inputs
warnings = []
# Check if windows are defined
if not st.session_state.cooling_form_data['windows']['windows']:
warnings.append(ValidationWarning(
"No windows defined",
"Add at least one window to continue"
))
# Check window-to-wall ratio
if st.session_state.cooling_form_data['windows']['windows']:
total_window_area = sum(window['area'] for window in st.session_state.cooling_form_data['windows']['windows'])
total_wall_area = sum(wall['area'] for wall in st.session_state.cooling_form_data['building_envelope']['walls'])
window_wall_ratio = total_window_area / total_wall_area if total_wall_area > 0 else 0
if window_wall_ratio > 0.6:
warnings.append(ValidationWarning(
"High window-to-wall ratio",
f"Window-to-wall ratio is {window_wall_ratio:.2f}, which is unusually high. Typical ratios are 0.2-0.4."
))
# Save warnings to session state
st.session_state.cooling_warnings['windows'] = warnings
# Display warnings if any
if warnings:
st.warning("Please review the following warnings:")
for warning in warnings:
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
st.write(f" Suggestion: {warning.suggestion}")
# Mark this step as completed if there are no critical warnings
st.session_state.cooling_completed['windows'] = not any(w.is_critical for w in warnings)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col1:
prev_button = st.button("← Back: Building Envelope", key="windows_prev")
if prev_button:
st.session_state.cooling_active_tab = "building_envelope"
st.experimental_rerun()
with col2:
next_button = st.button("Next: Internal Loads →", key="windows_next")
if next_button:
st.session_state.cooling_active_tab = "internal_loads"
st.experimental_rerun()
def internal_loads_form(ref_data):
"""
Form for internal loads information.
Args:
ref_data: Reference data object
"""
st.subheader("Internal Loads")
st.write("Enter information about occupants, lighting, and equipment.")
# Initialize internal loads data if not already in session state
if 'occupants' not in st.session_state.cooling_form_data['internal_loads']:
st.session_state.cooling_form_data['internal_loads']['occupants'] = {
'count': 4,
'activity_level': 'seated_resting'
}
if 'lighting' not in st.session_state.cooling_form_data['internal_loads']:
st.session_state.cooling_form_data['internal_loads']['lighting'] = {
'type': 'led',
'power_density': 5.0 # W/m²
}
if 'appliances' not in st.session_state.cooling_form_data['internal_loads']:
st.session_state.cooling_form_data['internal_loads']['appliances'] = {
'kitchen': True,
'living_room': True,
'bedroom': True,
'office': False
}
# Occupants section
st.write("### Occupants")
col1, col2 = st.columns(2)
with col1:
occupant_count = st.number_input(
"Number of Occupants",
value=int(st.session_state.cooling_form_data['internal_loads']['occupants'].get('count', 4)),
min_value=1,
step=1
)
with col2:
# Get activity level options from reference data
activity_options = {act_id: act_data['name'] for act_id, act_data in ref_data.internal_loads['people'].items()}
activity_level = st.selectbox(
"Activity Level",
options=list(activity_options.keys()),
format_func=lambda x: activity_options[x],
index=list(activity_options.keys()).index(st.session_state.cooling_form_data['internal_loads']['occupants'].get('activity_level', 'seated_resting')) if st.session_state.cooling_form_data['internal_loads']['occupants'].get('activity_level') in activity_options else 0
)
# Get heat gain per person
activity_data = ref_data.get_internal_load('people', activity_level)
sensible_heat_pp = activity_data['sensible_heat']
latent_heat_pp = activity_data['latent_heat']
total_heat_pp = sensible_heat_pp + latent_heat_pp
st.write(f"Heat gain per person: {total_heat_pp} W ({sensible_heat_pp} W sensible + {latent_heat_pp} W latent)")
st.write(f"Total occupant heat gain: {total_heat_pp * occupant_count} W")
# Save occupants data
st.session_state.cooling_form_data['internal_loads']['occupants'] = {
'count': occupant_count,
'activity_level': activity_level,
'sensible_heat_pp': sensible_heat_pp,
'latent_heat_pp': latent_heat_pp,
'total_heat_gain': total_heat_pp * occupant_count
}
# Lighting section
st.write("### Lighting")
col1, col2 = st.columns(2)
with col1:
# Get lighting type options from reference data
lighting_options = {light_id: light_data['name'] for light_id, light_data in ref_data.internal_loads['lighting'].items()}
lighting_type = st.selectbox(
"Lighting Type",
options=list(lighting_options.keys()),
format_func=lambda x: lighting_options[x],
index=list(lighting_options.keys()).index(st.session_state.cooling_form_data['internal_loads']['lighting'].get('type', 'led')) if st.session_state.cooling_form_data['internal_loads']['lighting'].get('type') in lighting_options else 0
)
with col2:
lighting_power_density = st.number_input(
"Lighting Power Density (W/m²)",
value=float(st.session_state.cooling_form_data['internal_loads']['lighting'].get('power_density', 5.0)),
min_value=1.0,
max_value=20.0,
step=0.5,
help="Typical values: Residential 5-10 W/m², Office 10-15 W/m²"
)
# Get lighting heat factor
lighting_data = ref_data.get_internal_load('lighting', lighting_type)
lighting_heat_factor = lighting_data['heat_factor']
# Calculate lighting heat gain
floor_area = st.session_state.cooling_form_data['building_info'].get('floor_area', 80.0)
lighting_heat_gain = lighting_power_density * floor_area * lighting_heat_factor
st.write(f"Lighting heat factor: {lighting_heat_factor}")
st.write(f"Total lighting heat gain: {lighting_heat_gain:.2f} W")
# Save lighting data
st.session_state.cooling_form_data['internal_loads']['lighting'] = {
'type': lighting_type,
'power_density': lighting_power_density,
'heat_factor': lighting_heat_factor,
'total_heat_gain': lighting_heat_gain
}
# Appliances section
st.write("### Appliances")
# Get appliance options from reference data
appliance_options = {app_id: app_data for app_id, app_data in ref_data.internal_loads['appliances'].items()}
col1, col2 = st.columns(2)
with col1:
has_kitchen = st.checkbox(
"Kitchen Appliances",
value=st.session_state.cooling_form_data['internal_loads']['appliances'].get('kitchen', True),
help=f"Heat gain: {appliance_options['kitchen']['heat_gain']} W"
)
has_living_room = st.checkbox(
"Living Room Appliances",
value=st.session_state.cooling_form_data['internal_loads']['appliances'].get('living_room', True),
help=f"Heat gain: {appliance_options['living_room']['heat_gain']} W"
)
with col2:
has_bedroom = st.checkbox(
"Bedroom Appliances",
value=st.session_state.cooling_form_data['internal_loads']['appliances'].get('bedroom', True),
help=f"Heat gain: {appliance_options['bedroom']['heat_gain']} W"
)
has_office = st.checkbox(
"Home Office Equipment",
value=st.session_state.cooling_form_data['internal_loads']['appliances'].get('office', False),
help=f"Heat gain: {appliance_options['office']['heat_gain']} W"
)
# Calculate appliance heat gain
appliance_heat_gain = 0
if has_kitchen:
appliance_heat_gain += appliance_options['kitchen']['heat_gain']
if has_living_room:
appliance_heat_gain += appliance_options['living_room']['heat_gain']
if has_bedroom:
appliance_heat_gain += appliance_options['bedroom']['heat_gain']
if has_office:
appliance_heat_gain += appliance_options['office']['heat_gain']
st.write(f"Total appliance heat gain: {appliance_heat_gain} W")
# Save appliances data
st.session_state.cooling_form_data['internal_loads']['appliances'] = {
'kitchen': has_kitchen,
'living_room': has_living_room,
'bedroom': has_bedroom,
'office': has_office,
'total_heat_gain': appliance_heat_gain
}
# Calculate total internal heat gain
total_internal_gain = (
st.session_state.cooling_form_data['internal_loads']['occupants']['total_heat_gain'] +
st.session_state.cooling_form_data['internal_loads']['lighting']['total_heat_gain'] +
st.session_state.cooling_form_data['internal_loads']['appliances']['total_heat_gain']
)
st.info(f"Total Internal Heat Gain: {total_internal_gain:.2f} W")
# Save total internal gain
st.session_state.cooling_form_data['internal_loads']['total_internal_gain'] = total_internal_gain
# Validate inputs
warnings = []
# Check if occupant count is reasonable for the floor area
floor_area = st.session_state.cooling_form_data['building_info'].get('floor_area', 80.0)
area_per_person = floor_area / occupant_count if occupant_count > 0 else float('inf')
if area_per_person < 10:
warnings.append(ValidationWarning(
"High occupant density",
f"Area per person ({area_per_person:.2f} m²) is low. Typical residential values are 20-30 m² per person."
))
# Check if lighting power density is reasonable
if lighting_power_density > 15:
warnings.append(ValidationWarning(
"High lighting power density",
"Lighting power density exceeds 15 W/m², which is high for residential buildings."
))
# Save warnings to session state
st.session_state.cooling_warnings['internal_loads'] = warnings
# Display warnings if any
if warnings:
st.warning("Please review the following warnings:")
for warning in warnings:
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
st.write(f" Suggestion: {warning.suggestion}")
# Mark this step as completed if there are no critical warnings
st.session_state.cooling_completed['internal_loads'] = not any(w.is_critical for w in warnings)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col1:
prev_button = st.button("← Back: Windows & Doors", key="internal_loads_prev")
if prev_button:
st.session_state.cooling_active_tab = "windows"
st.experimental_rerun()
with col2:
next_button = st.button("Next: Ventilation →", key="internal_loads_next")
if next_button:
st.session_state.cooling_active_tab = "ventilation"
st.experimental_rerun()
def ventilation_form(ref_data):
"""
Form for ventilation and infiltration information.
Args:
ref_data: Reference data object
"""
st.subheader("Ventilation & Infiltration")
st.write("Enter information about ventilation and infiltration rates.")
# Get building info
building_info = st.session_state.cooling_form_data['building_info']
volume = building_info.get('volume', 216.0)
temp_diff = building_info.get('temp_diff', 11.0)
# Initialize ventilation data if not already in session state
if 'infiltration' not in st.session_state.cooling_form_data['ventilation']:
st.session_state.cooling_form_data['ventilation']['infiltration'] = {
'air_changes': 0.5
}
if 'ventilation' not in st.session_state.cooling_form_data['ventilation']:
st.session_state.cooling_form_data['ventilation']['ventilation'] = {
'type': 'natural',
'air_changes': 0.0
}
# Infiltration section
st.write("### Infiltration")
st.write("Infiltration is the unintended air leakage through the building envelope.")
infiltration_ach = st.slider(
"Infiltration Rate (air changes per hour)",
value=float(st.session_state.cooling_form_data['ventilation']['infiltration'].get('air_changes', 0.5)),
min_value=0.1,
max_value=2.0,
step=0.1,
help="Typical values: 0.5 ACH for modern construction, 1.0 ACH for average construction, 1.5+ ACH for older buildings"
)
# Calculate infiltration heat gain
infiltration_heat_gain = 0.33 * volume * infiltration_ach * temp_diff
st.write(f"Infiltration heat gain: {infiltration_heat_gain:.2f} W")
# Save infiltration data
st.session_state.cooling_form_data['ventilation']['infiltration'] = {
'air_changes': infiltration_ach,
'volume': volume,
'temp_diff': temp_diff,
'heat_gain': infiltration_heat_gain
}
# Ventilation section
st.write("### Ventilation")
st.write("Ventilation is the intentional introduction of outside air into the building.")
col1, col2 = st.columns(2)
with col1:
ventilation_type = st.selectbox(
"Ventilation Type",
options=["natural", "mechanical", "mixed"],
format_func=lambda x: x.capitalize(),
index=["natural", "mechanical", "mixed"].index(st.session_state.cooling_form_data['ventilation']['ventilation'].get('type', 'natural'))
)
with col2:
ventilation_ach = st.number_input(
"Ventilation Rate (air changes per hour)",
value=float(st.session_state.cooling_form_data['ventilation']['ventilation'].get('air_changes', 0.0)),
min_value=0.0,
max_value=5.0,
step=0.1,
help="Typical values: 0.35-1.0 ACH for residential buildings"
)
# Calculate ventilation heat gain
ventilation_heat_gain = 0.33 * volume * ventilation_ach * temp_diff
st.write(f"Ventilation heat gain: {ventilation_heat_gain:.2f} W")
# Save ventilation data
st.session_state.cooling_form_data['ventilation']['ventilation'] = {
'type': ventilation_type,
'air_changes': ventilation_ach,
'volume': volume,
'temp_diff': temp_diff,
'heat_gain': ventilation_heat_gain
}
# Calculate total ventilation and infiltration heat gain
total_ventilation_gain = infiltration_heat_gain + ventilation_heat_gain
st.info(f"Total Ventilation & Infiltration Heat Gain: {total_ventilation_gain:.2f} W")
# Save total ventilation gain
st.session_state.cooling_form_data['ventilation']['total_gain'] = total_ventilation_gain
# Validate inputs
warnings = []
# Check if infiltration rate is reasonable
if infiltration_ach < 0.3:
warnings.append(ValidationWarning(
"Low infiltration rate",
"Infiltration rate below 0.3 ACH is unusually low for most buildings."
))
elif infiltration_ach > 1.5:
warnings.append(ValidationWarning(
"High infiltration rate",
"Infiltration rate above 1.5 ACH indicates a leaky building envelope."
))
# Check if ventilation rate is reasonable
if ventilation_ach > 0 and ventilation_ach < 0.35:
warnings.append(ValidationWarning(
"Low ventilation rate",
"Ventilation rate below 0.35 ACH may not provide adequate fresh air."
))
elif ventilation_ach > 2.0:
warnings.append(ValidationWarning(
"High ventilation rate",
"Ventilation rate above 2.0 ACH is unusually high for residential buildings."
))
# Save warnings to session state
st.session_state.cooling_warnings['ventilation'] = warnings
# Display warnings if any
if warnings:
st.warning("Please review the following warnings:")
for warning in warnings:
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
st.write(f" Suggestion: {warning.suggestion}")
# Mark this step as completed if there are no critical warnings
st.session_state.cooling_completed['ventilation'] = not any(w.is_critical for w in warnings)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col1:
prev_button = st.button("← Back: Internal Loads", key="ventilation_prev")
if prev_button:
st.session_state.cooling_active_tab = "internal_loads"
st.experimental_rerun()
with col2:
calculate_button = st.button("Calculate Results →", key="ventilation_calculate")
if calculate_button:
# Calculate cooling load
calculate_cooling_load()
st.session_state.cooling_active_tab = "results"
st.experimental_rerun()
def calculate_cooling_load():
"""Calculate cooling load based on input data."""
# Create calculator instance
calculator = CoolingLoadCalculator()
# Get form data
form_data = st.session_state.cooling_form_data
# Prepare building components for calculation
building_components = []
# Add walls
for wall in form_data['building_envelope'].get('walls', []):
building_components.append({
'name': wall['name'],
'area': wall['area'],
'u_value': wall['u_value'],
'temp_diff': wall['temp_diff']
})
# Add roof
roof = form_data['building_envelope'].get('roof', {})
if roof:
building_components.append({
'name': 'Roof',
'area': roof['area'],
'u_value': roof['u_value'],
'temp_diff': roof['temp_diff']
})
# Add floor
floor = form_data['building_envelope'].get('floor', {})
if floor:
building_components.append({
'name': 'Floor',
'area': floor['area'],
'u_value': floor['u_value'],
'temp_diff': floor['temp_diff']
})
# Prepare windows for calculation
windows = []
for window in form_data['windows'].get('windows', []):
windows.append({
'name': window['name'],
'area': window['area'],
'u_value': window['u_value'],
'orientation': window['orientation'],
'glass_type': window['glass_type'],
'shading': window['shading'],
'shgf': window['shgf'],
'shade_factor': 1.0 - window['shade_factor'],
'temp_diff': window['temp_diff']
})
# Add doors to building components
for door in form_data['windows'].get('doors', []):
building_components.append({
'name': door['name'],
'area': door['area'],
'u_value': door['u_value'],
'temp_diff': door['temp_diff']
})
# Prepare infiltration data
infiltration = form_data['ventilation'].get('infiltration', {})
ventilation = form_data['ventilation'].get('ventilation', {})
infiltration_data = {
'volume': infiltration.get('volume', 0),
'air_changes': infiltration.get('air_changes', 0) + ventilation.get('air_changes', 0),
'temp_diff': infiltration.get('temp_diff', 0)
}
# Prepare internal gains data
internal_gains = {
'num_people': form_data['internal_loads'].get('occupants', {}).get('count', 0),
'has_kitchen': form_data['internal_loads'].get('appliances', {}).get('kitchen', False),
'equipment_watts': (
form_data['internal_loads'].get('lighting', {}).get('total_heat_gain', 0) +
form_data['internal_loads'].get('appliances', {}).get('total_heat_gain', 0) -
(1000 if form_data['internal_loads'].get('appliances', {}).get('kitchen', False) else 0) # Subtract kitchen heat gain if included
)
}
# Calculate cooling load
results = calculator.calculate_total_cooling_load(
building_components=building_components,
windows=windows,
infiltration=infiltration_data,
internal_gains=internal_gains
)
# Save results to session state
st.session_state.cooling_results = results
# Add timestamp
st.session_state.cooling_results['timestamp'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Add building info
st.session_state.cooling_results['building_info'] = form_data['building_info']
return results
def results_page():
"""Display calculation results."""
st.subheader("Cooling Load Calculation Results")
# Check if results are available
if not st.session_state.cooling_results:
st.warning("No calculation results available. Please complete the input forms and calculate results.")
return
# Get results
results = st.session_state.cooling_results
# Display summary
st.write("### Summary")
col1, col2 = st.columns(2)
with col1:
st.metric("Sensible Cooling Load", f"{results['sensible_load']:.2f} W")
st.metric("Total Cooling Load", f"{results['total_load']:.2f} W")
# Convert to kW
total_load_kw = results['total_load'] / 1000
st.metric("Total Cooling Load", f"{total_load_kw:.2f} kW")
with col2:
st.metric("Latent Cooling Load", f"{results['latent_load']:.2f} W")
# Calculate cooling load per area
floor_area = results['building_info'].get('floor_area', 80.0)
cooling_load_per_area = results['total_load'] / floor_area
st.metric("Cooling Load per Area", f"{cooling_load_per_area:.2f} W/m²")
# Equipment sizing recommendation
# Add 10% safety factor
recommended_size = total_load_kw * 1.1
st.metric("Recommended Equipment Size", f"{recommended_size:.2f} kW")
# Display load breakdown
st.write("### Load Breakdown")
# Prepare data for pie chart
load_components = {
'Conduction (Opaque Surfaces)': results['conduction_gain'],
'Conduction (Windows)': results['window_conduction_gain'],
'Solar Radiation (Windows)': results['window_solar_gain'],
'Infiltration & Ventilation': results['infiltration_gain'],
'Internal Gains': results['internal_gain']
}
# Create pie chart
fig = px.pie(
values=list(load_components.values()),
names=list(load_components.keys()),
title="Cooling Load Components",
color_discrete_sequence=px.colors.sequential.Turbo,
hole=0.4, # Create a donut chart for better readability
labels={'label': 'Component', 'value': 'Heat Gain (W)'}
)
# Improve layout and formatting
fig.update_traces(
textposition='inside',
textinfo='percent+label',
hoverinfo='label+percent+value',
marker=dict(line=dict(color='#FFFFFF', width=2))
)
# Improve layout
fig.update_layout(
legend_title_text='Load Components',
font=dict(size=14),
title_font=dict(size=18),
title_x=0.5, # Center the title
margin=dict(t=50, b=50, l=50, r=50)
)
st.plotly_chart(fig)
# Display load components in a table
load_df = pd.DataFrame({
'Component': list(load_components.keys()),
'Load (W)': list(load_components.values()),
'Percentage (%)': [value / results['sensible_load'] * 100 for value in load_components.values()]
})
# Sort by load value for better readability
load_df = load_df.sort_values(by='Load (W)', ascending=False).reset_index(drop=True)
st.dataframe(load_df.style.format({
'Load (W)': '{:.2f}',
'Percentage (%)': '{:.2f}'
}).background_gradient(cmap='Blues', subset=['Percentage (%)']))
# Display detailed results
st.write("### Detailed Results")
# Create tabs for different result sections
tabs = st.tabs([
"Building Envelope",
"Windows & Doors",
"Internal Loads",
"Ventilation"
])
with tabs[0]:
st.subheader("Building Envelope Heat Gains")
# Get building components
building_components = []
# Add walls
for wall in st.session_state.cooling_form_data['building_envelope'].get('walls', []):
building_components.append({
'Component': wall['name'],
'Area (m²)': wall['area'],
'U-Value (W/m²°C)': wall['u_value'],
'Temperature Difference (°C)': wall['temp_diff'],
'Heat Gain (W)': wall['area'] * wall['u_value'] * wall['temp_diff']
})
# Add roof
roof = st.session_state.cooling_form_data['building_envelope'].get('roof', {})
if roof:
building_components.append({
'Component': 'Roof',
'Area (m²)': roof['area'],
'U-Value (W/m²°C)': roof['u_value'],
'Temperature Difference (°C)': roof['temp_diff'],
'Heat Gain (W)': roof['area'] * roof['u_value'] * roof['temp_diff']
})
# Add floor
floor = st.session_state.cooling_form_data['building_envelope'].get('floor', {})
if floor:
building_components.append({
'Component': 'Floor',
'Area (m²)': floor['area'],
'U-Value (W/m²°C)': floor['u_value'],
'Temperature Difference (°C)': floor['temp_diff'],
'Heat Gain (W)': floor['area'] * floor['u_value'] * floor['temp_diff']
})
# Create dataframe
envelope_df = pd.DataFrame(building_components)
# Display table
st.dataframe(envelope_df.style.format({
'Area (m²)': '{:.2f}',
'U-Value (W/m²°C)': '{:.2f}',
'Temperature Difference (°C)': '{:.2f}',
'Heat Gain (W)': '{:.2f}'
}))
# Create bar chart
fig = px.bar(
envelope_df,
x='Component',
y='Heat Gain (W)',
title="Heat Gain by Building Component",
color='Component',
color_discrete_sequence=px.colors.qualitative.Set3
)
st.plotly_chart(fig)
with tabs[1]:
st.subheader("Windows & Doors Heat Gains")
# Windows section
st.write("#### Windows")
# Get windows
windows_data = []
for window in st.session_state.cooling_form_data['windows'].get('windows', []):
windows_data.append({
'Component': window['name'],
'Orientation': window['orientation'].capitalize(),
'Area (m²)': window['area'],
'U-Value (W/m²°C)': window['u_value'],
'Temperature Difference (°C)': window['temp_diff'],
'Conduction Heat Gain (W)': window['area'] * window['u_value'] * window['temp_diff'],
'Solar Heat Gain Factor (W/m²)': window['shgf'],
'Shading Factor': 1.0 - window['shade_factor'],
'Solar Heat Gain (W)': window['area'] * window['shgf'] * (1.0 - window['shade_factor']),
'Total Heat Gain (W)': (window['area'] * window['u_value'] * window['temp_diff']) +
(window['area'] * window['shgf'] * (1.0 - window['shade_factor']))
})
if windows_data:
# Create dataframe
windows_df = pd.DataFrame(windows_data)
# Display table
st.dataframe(windows_df.style.format({
'Area (m²)': '{:.2f}',
'U-Value (W/m²°C)': '{:.2f}',
'Temperature Difference (°C)': '{:.2f}',
'Conduction Heat Gain (W)': '{:.2f}',
'Solar Heat Gain Factor (W/m²)': '{:.2f}',
'Shading Factor': '{:.2f}',
'Solar Heat Gain (W)': '{:.2f}',
'Total Heat Gain (W)': '{:.2f}'
}))
# Create grouped bar chart
fig = go.Figure()
fig.add_trace(go.Bar(
x=windows_df['Component'],
y=windows_df['Conduction Heat Gain (W)'],
name='Conduction Heat Gain',
marker_color='#1f77b4',
text=windows_df['Conduction Heat Gain (W)'].round(1),
textposition='auto',
hovertemplate='<b>%{x}</b><br>Conduction Heat Gain: %{y:.1f} W<extra></extra>'
))
fig.add_trace(go.Bar(
x=windows_df['Component'],
y=windows_df['Solar Heat Gain (W)'],
name='Solar Heat Gain',
marker_color='#ff7f0e',
text=windows_df['Solar Heat Gain (W)'].round(1),
textposition='auto',
hovertemplate='<b>%{x}</b><br>Solar Heat Gain: %{y:.1f} W<extra></extra>'
))
fig.update_layout(
title="Window Heat Gains",
xaxis_title="Window",
yaxis_title="Heat Gain (W)",
barmode='stack',
font=dict(size=14),
title_font=dict(size=18),
title_x=0.5, # Center the title
margin=dict(t=50, b=50, l=50, r=50),
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
)
)
st.plotly_chart(fig)
else:
st.write("No windows defined.")
# Doors section
st.write("#### Doors")
# Get doors
doors_data = []
for door in st.session_state.cooling_form_data['windows'].get('doors', []):
doors_data.append({
'Component': door['name'],
'Type': door['type'],
'Area (m²)': door['area'],
'U-Value (W/m²°C)': door['u_value'],
'Temperature Difference (°C)': door['temp_diff'],
'Heat Gain (W)': door['area'] * door['u_value'] * door['temp_diff']
})
if doors_data:
# Create dataframe
doors_df = pd.DataFrame(doors_data)
# Display table
st.dataframe(doors_df.style.format({
'Area (m²)': '{:.2f}',
'U-Value (W/m²°C)': '{:.2f}',
'Temperature Difference (°C)': '{:.2f}',
'Heat Gain (W)': '{:.2f}'
}))
# Create bar chart
fig = px.bar(
doors_df,
x='Component',
y='Heat Gain (W)',
title="Door Heat Gains",
color='Type',
color_discrete_sequence=px.colors.qualitative.Pastel
)
st.plotly_chart(fig)
else:
st.write("No doors defined.")
with tabs[2]:
st.subheader("Internal Heat Gains")
# Get internal loads data
internal_loads = st.session_state.cooling_form_data['internal_loads']
# Create dataframe
internal_loads_data = [
{
'Source': 'Occupants',
'Details': f"{internal_loads['occupants']['count']} people",
'Heat Gain (W)': internal_loads['occupants']['total_heat_gain']
},
{
'Source': 'Lighting',
'Details': f"{internal_loads['lighting']['type']} lighting",
'Heat Gain (W)': internal_loads['lighting']['total_heat_gain']
},
{
'Source': 'Appliances',
'Details': ', '.join([k for k, v in internal_loads['appliances'].items() if v and k != 'total_heat_gain']),
'Heat Gain (W)': internal_loads['appliances']['total_heat_gain']
}
]
internal_loads_df = pd.DataFrame(internal_loads_data)
# Display table
st.dataframe(internal_loads_df.style.format({
'Heat Gain (W)': '{:.2f}'
}))
# Create bar chart
fig = px.bar(
internal_loads_df,
x='Source',
y='Heat Gain (W)',
title="Internal Heat Gains",
color='Source',
color_discrete_sequence=px.colors.qualitative.Pastel1
)
st.plotly_chart(fig)
with tabs[3]:
st.subheader("Ventilation & Infiltration Heat Gains")
# Get ventilation data
ventilation_data = st.session_state.cooling_form_data['ventilation']
# Create dataframe
ventilation_df = pd.DataFrame([
{
'Source': 'Infiltration',
'Air Changes per Hour': ventilation_data['infiltration']['air_changes'],
'Volume (m³)': ventilation_data['infiltration']['volume'],
'Temperature Difference (°C)': ventilation_data['infiltration']['temp_diff'],
'Heat Gain (W)': ventilation_data['infiltration']['heat_gain']
},
{
'Source': 'Ventilation',
'Air Changes per Hour': ventilation_data['ventilation']['air_changes'],
'Volume (m³)': ventilation_data['ventilation']['volume'],
'Temperature Difference (°C)': ventilation_data['ventilation']['temp_diff'],
'Heat Gain (W)': ventilation_data['ventilation']['heat_gain']
}
])
# Display table
st.dataframe(ventilation_df.style.format({
'Air Changes per Hour': '{:.2f}',
'Volume (m³)': '{:.2f}',
'Temperature Difference (°C)': '{:.2f}',
'Heat Gain (W)': '{:.2f}'
}))
# Create bar chart
fig = px.bar(
ventilation_df,
x='Source',
y='Heat Gain (W)',
title="Ventilation & Infiltration Heat Gains",
color='Source',
color_discrete_sequence=px.colors.qualitative.Pastel2
)
st.plotly_chart(fig)
# Export options
st.write("### Export Options")
col1, col2 = st.columns(2)
with col1:
if st.button("Export Results as CSV"):
# Create a CSV file with results
csv_data = export_data(st.session_state.cooling_form_data, st.session_state.cooling_results, format='csv')
# Provide download link
st.download_button(
label="Download CSV",
data=csv_data,
file_name=f"cooling_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv"
)
with col2:
if st.button("Export Results as JSON"):
# Create a JSON file with results
json_data = export_data(st.session_state.cooling_form_data, st.session_state.cooling_results, format='json')
# Provide download link
st.download_button(
label="Download JSON",
data=json_data,
file_name=f"cooling_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json"
)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col1:
prev_button = st.button("← Back: Ventilation", key="results_prev")
if prev_button:
st.session_state.cooling_active_tab = "ventilation"
st.experimental_rerun()
with col2:
recalculate_button = st.button("Recalculate", key="results_recalculate")
if recalculate_button:
# Recalculate cooling load
calculate_cooling_load()
st.experimental_rerun()
def cooling_calculator():
"""Main function for the cooling load calculator page."""
st.title("Cooling Load Calculator")
# Initialize reference data
ref_data = ReferenceData()
# Initialize session state
load_session_state()
# Initialize active tab if not already set
if 'cooling_active_tab' not in st.session_state:
st.session_state.cooling_active_tab = "building_info"
# Create tabs for different steps
tabs = st.tabs([
"1. Building Information",
"2. Building Envelope",
"3. Windows & Doors",
"4. Internal Loads",
"5. Ventilation",
"6. Results"
])
# Add direct navigation buttons at the top
st.write("### Navigation")
st.write("Click on any button below to navigate directly to that section:")
col1, col2, col3 = st.columns(3)
with col1:
if st.button("1. Building Information", key="direct_nav_building_info"):
st.session_state.cooling_active_tab = "building_info"
st.experimental_rerun()
if st.button("2. Building Envelope", key="direct_nav_building_envelope"):
st.session_state.cooling_active_tab = "building_envelope"
st.experimental_rerun()
with col2:
if st.button("3. Windows & Doors", key="direct_nav_windows"):
st.session_state.cooling_active_tab = "windows"
st.experimental_rerun()
if st.button("4. Internal Loads", key="direct_nav_internal_loads"):
st.session_state.cooling_active_tab = "internal_loads"
st.experimental_rerun()
with col3:
if st.button("5. Ventilation", key="direct_nav_ventilation"):
st.session_state.cooling_active_tab = "ventilation"
st.experimental_rerun()
if st.button("6. Results", key="direct_nav_results"):
# Only enable if all previous steps are completed
if all(st.session_state.cooling_completed.values()):
st.session_state.cooling_active_tab = "results"
st.experimental_rerun()
else:
st.warning("Please complete all previous steps before viewing results.")
# Display the active tab
with tabs[0]:
if st.session_state.cooling_active_tab == "building_info":
building_info_form(ref_data)
with tabs[1]:
if st.session_state.cooling_active_tab == "building_envelope":
building_envelope_form(ref_data)
with tabs[2]:
if st.session_state.cooling_active_tab == "windows":
windows_form(ref_data)
with tabs[3]:
if st.session_state.cooling_active_tab == "internal_loads":
internal_loads_form(ref_data)
with tabs[4]:
if st.session_state.cooling_active_tab == "ventilation":
ventilation_form(ref_data)
with tabs[5]:
if st.session_state.cooling_active_tab == "results":
results_page()
if __name__ == "__main__":
cooling_calculator()