HVAC-text-02 / utils /heating_load.py
mabuseif's picture
Upload 27 files
ca54a52 verified
"""
Heating load calculation module for HVAC Load Calculator.
Implements ASHRAE steady-state methods with simplified thermal lag for compatibility.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
"""
from typing import Dict, List, Any, Optional, Tuple
import math
import numpy as np
import logging
from enum import Enum
from dataclasses import dataclass
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Import utility modules
from utils.psychrometrics import Psychrometrics
from utils.heat_transfer import HeatTransferCalculations
# Import data modules
from data.building_components import Wall, Roof, Floor, Window, Door, Orientation, ComponentType
class HeatingLoadCalculator:
"""Class for heating load calculations based on ASHRAE steady-state methods."""
def __init__(self, debug_mode: bool = False):
"""
Initialize heating load calculator with psychrometric and heat transfer calculations.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
Args:
debug_mode: Enable debug logging if True
"""
self.psychrometrics = Psychrometrics()
self.heat_transfer = HeatTransferCalculations()
self.safety_factor = 1.15 # 15% safety factor for design loads
self.debug_mode = debug_mode
if debug_mode:
logger.setLevel(logging.DEBUG)
def validate_inputs(self, components: Dict[str, List[Any]], outdoor_temp: float, indoor_temp: float) -> None:
"""
Validate input parameters for heating load calculations.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
Args:
components: Dictionary of building components
outdoor_temp: Outdoor design temperature in °C
indoor_temp: Indoor design temperature in °C
Raises:
ValueError: If inputs are invalid
"""
if not components:
raise ValueError("Building components dictionary cannot be empty")
for component_type, comp_list in components.items():
if not isinstance(comp_list, list):
raise ValueError(f"Components for {component_type} must be a list")
for comp in comp_list:
if not hasattr(comp, 'area') or comp.area <= 0:
raise ValueError(f"Invalid area for {component_type}: {comp.name}")
if not hasattr(comp, 'u_value') or comp.u_value <= 0:
raise ValueError(f"Invalid U-value for {component_type}: {comp.name}")
if not -50 <= outdoor_temp <= 60 or not -50 <= indoor_temp <= 60:
raise ValueError("Temperatures must be between -50°C and 60°C")
if indoor_temp - outdoor_temp < 1:
raise ValueError("Indoor temperature must be at least 1°C above outdoor temperature for heating")
def calculate_wall_heating_load(self, wall: Wall, outdoor_temp: float, indoor_temp: float) -> float:
"""
Calculate heating load for a wall, with simplified thermal lag.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.1.
Args:
wall: Wall component
outdoor_temp: Outdoor temperature in °C
indoor_temp: Indoor temperature in °C
Returns:
Heating load in W
"""
delta_t = indoor_temp - outdoor_temp
if delta_t <= 1:
return 0.0 # Skip calculation for small temperature differences
# Use default lag factor (no thermal mass adjustment)
lag_factor = 1.0
adjusted_delta_t = delta_t * lag_factor
load = self.heat_transfer.conduction_heat_transfer(wall.u_value, wall.area, adjusted_delta_t)
return max(0, load)
def calculate_roof_heating_load(self, roof: Roof, outdoor_temp: float, indoor_temp: float) -> float:
"""
Calculate heating load for a roof, with simplified thermal lag.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.1.
Args:
roof: Roof component
outdoor_temp: Outdoor temperature in °C
indoor_temp: Indoor temperature in °C
Returns:
Heating load in W
"""
delta_t = indoor_temp - outdoor_temp
if delta_t <= 1:
return 0.0
lag_factor = 1.0
adjusted_delta_t = delta_t * lag_factor
load = self.heat_transfer.conduction_heat_transfer(roof.u_value, roof.area, adjusted_delta_t)
return max(0, load)
def calculate_floor_heating_load(self, floor: Floor, ground_temp: float, indoor_temp: float) -> float:
"""
Calculate heating load for a floor, using dynamic F-factor for ground contact.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.3.
Args:
floor: Floor component
ground_temp: Ground temperature in °C
indoor_temp: Indoor temperature in °C
Returns:
Heating load in W
"""
delta_t = indoor_temp - ground_temp
if delta_t <= 1:
return 0.0
if floor.is_ground_contact:
# Dynamic F-factor based on insulation
f_factor = 0.3 if floor.insulated else 0.73 # W/m·K
load = f_factor * floor.perimeter_length * delta_t
else:
load = self.heat_transfer.conduction_heat_transfer(floor.u_value, floor.area, delta_t)
if self.debug_mode:
logger.debug(f"Floor {floor.name} load: {load:.2f} W, Delta T: {delta_t:.2f}°C")
return max(0, load)
def calculate_window_heating_load(self, window: Window, outdoor_temp: float, indoor_temp: float) -> float:
"""
Calculate heating load for a window.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.1.
Args:
window: Window component
outdoor_temp: Outdoor temperature in °C
indoor_temp: Indoor temperature in °C
Returns:
Heating load in W
"""
delta_t = indoor_temp - outdoor_temp
if delta_t <= 1:
return 0.0
load = self.heat_transfer.conduction_heat_transfer(window.u_value, window.area, delta_t)
return max(0, load)
def calculate_door_heating_load(self, door: Door, outdoor_temp: float, indoor_temp: float) -> float:
"""
Calculate heating load for a door.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.1.
Args:
door: Door component
outdoor_temp: Outdoor temperature in °C
indoor_temp: Indoor temperature in °C
Returns:
Heating load in W
"""
delta_t = indoor_temp - outdoor_temp
if delta_t <= 1:
return 0.0
load = self.heat_transfer.conduction_heat_transfer(door.u_value, door.area, delta_t)
return max(0, load)
def calculate_infiltration_heating_load(self, indoor_conditions: Dict[str, float],
outdoor_conditions: Dict[str, float],
infiltration: Dict[str, float],
building_height: float,
p_atm: float = 101325) -> Tuple[float, float]:
"""
Calculate sensible and latent heating loads due to infiltration.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equations 18.5-18.6.
Args:
indoor_conditions: Indoor conditions (temperature, relative_humidity)
outdoor_conditions: Outdoor conditions (design_temperature, design_relative_humidity, wind_speed)
infiltration: Infiltration parameters (flow_rate, crack_length, height)
building_height: Building height in m
p_atm: Atmospheric pressure in Pa (default: 101325 Pa)
Returns:
Tuple of sensible and latent loads in W
"""
delta_t = indoor_conditions['temperature'] - outdoor_conditions['design_temperature']
if delta_t <= 1:
return 0.0, 0.0
# Calculate pressure differences
wind_pd = self.heat_transfer.wind_pressure_difference(outdoor_conditions['wind_speed'])
stack_pd = self.heat_transfer.stack_pressure_difference(
building_height,
indoor_conditions['temperature'] + 273.15,
outdoor_conditions['design_temperature'] + 273.15
)
total_pd = self.heat_transfer.combined_pressure_difference(wind_pd, stack_pd)
# Calculate infiltration flow rate
crack_length = infiltration.get('crack_length', 20.0)
flow_rate = self.heat_transfer.crack_method_infiltration(crack_length, 0.0002, total_pd)
# Calculate humidity ratio difference
w_indoor = self.psychrometrics.humidity_ratio(
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
w_outdoor = self.psychrometrics.humidity_ratio(
outdoor_conditions['design_temperature'],
outdoor_conditions['design_relative_humidity'],
p_atm
)
delta_w = max(0, w_indoor - w_outdoor)
# Calculate sensible and latent loads using indoor conditions for air properties
sensible_load = self.heat_transfer.infiltration_heat_transfer(
flow_rate, delta_t,
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
latent_load = self.heat_transfer.infiltration_latent_heat_transfer(
flow_rate, delta_w,
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
if self.debug_mode:
logger.debug(f"Infiltration flow rate: {flow_rate:.6f} m³/s, Sensible load: {sensible_load:.2f} W, Latent load: {latent_load:.2f} W")
return max(0, sensible_load), max(0, latent_load)
def calculate_ventilation_heating_load(self, ventilation: Dict[str, float],
indoor_conditions: Dict[str, float],
outdoor_conditions: Dict[str, float],
p_atm: float = 101325) -> Tuple[float, float]:
"""
Calculate sensible and latent heating loads due to ventilation.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equations 18.5-18.6.
Args:
ventilation: Ventilation parameters (flow_rate)
indoor_conditions: Indoor conditions (temperature, relative_humidity)
outdoor_conditions: Outdoor conditions (design_temperature, design_relative_humidity)
p_atm: Atmospheric pressure in Pa (default: 101325 Pa)
Returns:
Tuple of sensible and latent loads in W
"""
delta_t = indoor_conditions['temperature'] - outdoor_conditions['design_temperature']
if delta_t <= 1:
return 0.0, 0.0
flow_rate = ventilation['flow_rate']
w_indoor = self.psychrometrics.humidity_ratio(
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
w_outdoor = self.psychrometrics.humidity_ratio(
outdoor_conditions['design_temperature'],
outdoor_conditions['design_relative_humidity'],
p_atm
)
delta_w = max(0, w_indoor - w_outdoor)
# Calculate sensible and latent loads using indoor conditions for air properties
sensible_load = self.heat_transfer.infiltration_heat_transfer(
flow_rate, delta_t,
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
latent_load = self.heat_transfer.infiltration_latent_heat_transfer(
flow_rate, delta_w,
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
if self.debug_mode:
logger.debug(f"Ventilation flow rate: {flow_rate:.6f} m³/s, Sensible load: {sensible_load:.2f} W, Latent load: {latent_load:.2f} W")
return max(0, sensible_load), max(0, latent_load)
def calculate_internal_gains(self, internal_loads: Dict[str, Any]) -> float:
"""
Calculate internal heat gains from people, lighting, and equipment.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.4.
Args:
internal_loads: Internal loads (people, lights, equipment)
Returns:
Total internal gains in W
"""
total_gains = 0.0
# People gains
people = internal_loads.get('people', {})
if people.get('number', 0) > 0:
sensible_gain = people.get('sensible_gain', 70.0)
total_gains += people['number'] * sensible_gain
# Lighting gains
lights = internal_loads.get('lights', {})
if lights.get('power', 0) > 0:
total_gains += lights['power'] * lights.get('use_factor', 0.8)
# Equipment gains
equipment = internal_loads.get('equipment', {})
if equipment.get('power', 0) > 0:
total_gains += equipment['power'] * equipment.get('use_factor', 0.7)
return max(0, total_gains)
def calculate_design_heating_load(self, building_components: Dict[str, List[Any]],
outdoor_conditions: Dict[str, float],
indoor_conditions: Dict[str, float],
internal_loads: Dict[str, Any],
p_atm: float = 101325) -> Dict[str, float]:
"""
Calculate design heating loads for all components.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
Args:
building_components: Dictionary of building components
outdoor_conditions: Outdoor conditions (design_temperature, design_relative_humidity, ground_temperature, wind_speed)
indoor_conditions: Indoor conditions (temperature, relative_humidity)
internal_loads: Internal loads (people, lights, equipment, infiltration, ventilation)
p_atm: Atmospheric pressure in Pa (default: 101325 Pa)
Returns:
Dictionary of design loads in W
"""
try:
self.validate_inputs(building_components, outdoor_conditions['design_temperature'], indoor_conditions['temperature'])
except ValueError as e:
raise ValueError(f"Input validation failed: {str(e)}")
loads = {
'walls': 0.0,
'roofs': 0.0,
'floors': 0.0,
'windows': 0.0,
'doors': 0.0,
'infiltration_sensible': 0.0,
'infiltration_latent': 0.0,
'ventilation_sensible': 0.0,
'ventilation_latent': 0.0,
'internal_gains': 0.0
}
# Calculate envelope loads
for wall in building_components.get('walls', []):
loads['walls'] += self.calculate_wall_heating_load(wall, outdoor_conditions['design_temperature'], indoor_conditions['temperature'])
for roof in building_components.get('roofs', []):
loads['roofs'] += self.calculate_roof_heating_load(roof, outdoor_conditions['design_temperature'], indoor_conditions['temperature'])
for floor in building_components.get('floors', []):
loads['floors'] += self.calculate_floor_heating_load(floor, outdoor_conditions['ground_temperature'], indoor_conditions['temperature'])
for window in building_components.get('windows', []):
loads['windows'] += self.calculate_window_heating_load(window, outdoor_conditions['design_temperature'], indoor_conditions['temperature'])
for door in building_components.get('doors', []):
loads['doors'] += self.calculate_door_heating_load(door, outdoor_conditions['design_temperature'], indoor_conditions['temperature'])
# Calculate infiltration and ventilation loads
building_height = internal_loads.get('infiltration', {}).get('height', 3.0)
infiltration_sensible, infiltration_latent = self.calculate_infiltration_heating_load(
indoor_conditions, outdoor_conditions, internal_loads.get('infiltration', {}), building_height, p_atm
)
loads['infiltration_sensible'] = infiltration_sensible
loads['infiltration_latent'] = infiltration_latent
ventilation_sensible, ventilation_latent = self.calculate_ventilation_heating_load(
internal_loads.get('ventilation', {}), indoor_conditions, outdoor_conditions, p_atm
)
loads['ventilation_sensible'] = ventilation_sensible
loads['ventilation_latent'] = ventilation_latent
# Calculate internal gains (negative for heating)
loads['internal_gains'] = -self.calculate_internal_gains(internal_loads)
return loads
def calculate_heating_load_summary(self, design_loads: Dict[str, float]) -> Dict[str, float]:
"""
Summarize heating loads with safety factor.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
Args:
design_loads: Dictionary of design loads in W
Returns:
Summary dictionary with total, subtotal, and safety factor
"""
subtotal = sum(
load for key, load in design_loads.items()
if key not in ['internal_gains'] and load > 0
)
internal_gains = design_loads.get('internal_gains', 0)
total = max(0, subtotal + internal_gains) * self.safety_factor
return {
'subtotal': subtotal,
'internal_gains': internal_gains,
'total': total,
'safety_factor': self.safety_factor
}
def calculate_heating_degree_days(self, base_temp: float, monthly_temps: Dict[str, float]) -> float:
"""
Calculate heating degree days for a year.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 14, Section 14.3.
Args:
base_temp: Base temperature for HDD calculation in °C
monthly_temps: Dictionary of monthly average temperatures
Returns:
Total heating degree days
"""
hdd = 0.0
days_per_month = {
'Jan': 31, 'Feb': 28, 'Mar': 31, 'Apr': 30, 'May': 31, 'Jun': 30,
'Jul': 31, 'Aug': 31, 'Sep': 30, 'Oct': 31, 'Nov': 30, 'Dec': 31
}
for month, temp in monthly_temps.items():
if temp < base_temp:
hdd += (base_temp - temp) * days_per_month[month]
return hdd
def calculate_annual_heating_energy(self, design_loads: Dict[str, float],
monthly_temps: Dict[str, float],
indoor_temp: float,
operating_hours: str) -> float:
"""
Calculate annual heating energy consumption.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 14, Section 14.3.
Args:
design_loads: Dictionary of design loads in W
monthly_temps: Dictionary of monthly average temperatures
indoor_temp: Indoor design temperature in °C
operating_hours: Operating hours (e.g., '8:00-18:00')
Returns:
Annual heating energy in kWh
"""
base_temp = indoor_temp
hdd = self.calculate_heating_degree_days(base_temp, monthly_temps)
# Parse operating hours
start_hour, end_hour = map(lambda x: int(x.split(':')[0]), operating_hours.split('-'))
daily_hours = end_hour - start_hour
# Calculate design condition degree days
design_temp = min(monthly_temps.values())
design_delta_t = indoor_temp - design_temp
if design_delta_t <= 1:
return 0.0
total_load = self.calculate_heating_load_summary(design_loads)['total']
# Scale load by HDD and operating hours
annual_energy = (total_load / design_delta_t) * hdd * (daily_hours / 24) / 1000 # kWh
return max(0, annual_energy)
def calculate_monthly_heating_loads(self, building_components: Dict[str, List[Any]],
outdoor_conditions: Dict[str, float],
indoor_conditions: Dict[str, float],
internal_loads: Dict[str, Any],
monthly_temps: Dict[str, float],
p_atm: float = 101325) -> Dict[str, float]:
"""
Calculate monthly heating loads.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
Args:
building_components: Dictionary of building components
outdoor_conditions: Outdoor conditions
indoor_conditions: Indoor conditions
internal_loads: Internal loads
monthly_temps: Dictionary of monthly average temperatures
p_atm: Atmospheric pressure in Pa (default: 101325 Pa)
Returns:
Dictionary of monthly heating loads in kW
"""
monthly_loads = {}
days_per_month = {
'Jan': 31, 'Feb': 28, 'Mar': 31, 'Apr': 30, 'May': 31, 'Jun': 30,
'Jul': 31, 'Aug': 31, 'Sep': 30, 'Oct': 31, 'Nov': 30, 'Dec': 31
}
for month, temp in monthly_temps.items():
modified_outdoor = outdoor_conditions.copy()
modified_outdoor['design_temperature'] = temp
modified_outdoor['ground_temperature'] = temp
try:
design_loads = self.calculate_design_heating_load(
building_components, modified_outdoor, indoor_conditions, internal_loads, p_atm
)
summary = self.calculate_heating_load_summary(design_loads)
monthly_loads[month] = summary['total'] / 1000 # kW
except ValueError:
monthly_loads[month] = 0.0 # Skip invalid months
return monthly_loads
# Example usage
if __name__ == "__main__":
calculator = HeatingLoadCalculator(debug_mode=True)
# Example building components
components = {
'walls': [Wall(id="w1", name="North Wall", area=20.0, u_value=0.5, orientation=Orientation.NORTH)],
'roofs': [Roof(id="r1", name="Main Roof", area=100.0, u_value=0.3, orientation=Orientation.HORIZONTAL)],
'floors': [Floor(id="f1", name="Ground Floor", area=100.0, u_value=0.4, perimeter_length=40.0,
is_ground_contact=True, insulated=True, ground_temperature_c=10.0)],
'windows': [Window(id="win1", name="South Window", area=10.0, u_value=2.8, orientation=Orientation.SOUTH,
shgc=0.7, shading_coefficient=0.8)],
'doors': [Door(id="d1", name="Main Door", area=2.0, u_value=2.0, orientation=Orientation.NORTH)]
}
outdoor_conditions = {
'design_temperature': -5.0,
'design_relative_humidity': 80.0,
'ground_temperature': 10.0,
'wind_speed': 4.0
}
indoor_conditions = {
'temperature': 21.0,
'relative_humidity': 40.0
}
internal_loads = {
'people': {'number': 10, 'sensible_gain': 70.0, 'operating_hours': '8:00-18:00'},
'lights': {'power': 1000.0, 'use_factor': 0.8, 'hours_operation': '8h'},
'equipment': {'power': 500.0, 'use_factor': 0.7, 'hours_operation': '8h'},
'infiltration': {'flow_rate': 0.05, 'height': 3.0, 'crack_length': 20.0},
'ventilation': {'flow_rate': 0.1},
'operating_hours': '8:00-18:00'
}
monthly_temps = {
'Jan': -5.0, 'Feb': -3.0, 'Mar': 2.0, 'Apr': 8.0, 'May': 14.0, 'Jun': 19.0,
'Jul': 22.0, 'Aug': 21.0, 'Sep': 16.0, 'Oct': 10.0, 'Nov': 4.0, 'Dec': -2.0
}
# Calculate design loads
design_loads = calculator.calculate_design_heating_load(components, outdoor_conditions, indoor_conditions, internal_loads)
summary = calculator.calculate_heating_load_summary(design_loads)
# Log results
logger.info(f"Total Heating Load: {summary['total']:.2f} W")
logger.info(f"Wall Load: {design_loads['walls']:.2f} W")
logger.info(f"Roof Load: {design_loads['roofs']:.2f} W")
logger.info(f"Floor Load: {design_loads['floors']:.2f} W")
logger.info(f"Window Load: {design_loads['windows']:.2f} W")
logger.info(f"Door Load: {design_loads['doors']:.2f} W")
logger.info(f"Infiltration Sensible Load: {design_loads['infiltration_sensible']:.2f} W")
logger.info(f"Infiltration Latent Load: {design_loads['infiltration_latent']:.2f} W")
logger.info(f"Ventilation Sensible Load: {design_loads['ventilation_sensible']:.2f} W")
logger.info(f"Ventilation Latent Load: {design_loads['ventilation_latent']:.2f} W")
logger.info(f"Internal Gains: {design_loads['internal_gains']:.2f} W")
# Calculate annual energy
annual_energy = calculator.calculate_annual_heating_energy(
design_loads, monthly_temps, indoor_conditions['temperature'], internal_loads['operating_hours']
)
logger.info(f"Annual Heating Energy: {annual_energy:.2f} kWh")
# Calculate monthly loads
monthly_loads = calculator.calculate_monthly_heating_loads(
components, outdoor_conditions, indoor_conditions, internal_loads, monthly_temps
)
logger.info("Monthly Heating Loads (kW):")
for month, load in monthly_loads.items():
logger.info(f"{month}: {load:.2f} kW")