HVAC-text-02 / data /ashrae_tables.py
mabuseif's picture
Upload 27 files
ca54a52 verified
"""
ASHRAE tables module for HVAC Load Calculator.
Integrates CLTD, SCL, CLF tables, cooling load calculations, climatic corrections, and visualization.
Combines data from original ashrae_tables.py and enhanced versions with ashrae_tables (3).py.
"""
from typing import Dict, List, Any, Optional, Tuple
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
from enum import Enum
# Define paths
DATA_DIR = os.path.dirname(os.path.abspath(__file__))
class WallGroup(Enum):
"""Enumeration for ASHRAE wall groups."""
A = "A" # Light construction
B = "B"
C = "C"
D = "D"
E = "E"
F = "F"
G = "G"
H = "H" # Heavy construction
class RoofGroup(Enum):
"""Enumeration for ASHRAE roof groups."""
A = "A" # Light construction
B = "B"
C = "C"
D = "D"
E = "E"
F = "F"
G = "G" # Heavy construction
class Orientation(Enum):
"""Enumeration for building component orientations."""
N = "North"
NE = "Northeast"
E = "East"
SE = "Southeast"
S = "South"
SW = "Southwest"
W = "West"
NW = "Northwest"
HOR = "Horizontal" # For roofs and floors
class ASHRAETables:
"""Class for managing ASHRAE tables for load calculations."""
def __init__(self):
"""Initialize ASHRAE tables."""
# Load tables
self.cltd_wall = self._load_cltd_wall_table()
self.cltd_roof = self._load_cltd_roof_table()
self.scl = self._load_scl_table()
self.clf_lights = self._load_clf_lights_table()
self.clf_people = self._load_clf_people_table()
self.clf_equipment = self._load_clf_equipment_table()
self.heat_gain = self._load_heat_gain_table()
# Load correction factors
self.latitude_correction = self._load_latitude_correction()
self.color_correction = self._load_color_correction()
self.month_correction = self._load_month_correction()
# Load thermal properties and roof classifications
self.thermal_properties = self._load_thermal_properties()
self.roof_classifications = self._load_roof_classifications()
def _validate_cltd_inputs(self, group: str, orientation: str, hour: int, latitude: str, month: str, color: str, is_wall: bool = True) -> Tuple[bool, str]:
"""Validate inputs for CLTD calculations."""
valid_groups = [e.value for e in WallGroup] if is_wall else [e.value for e in RoofGroup]
valid_orientations = [e.value for e in Orientation]
valid_latitudes = ['24N', '32N', '40N', '48N', '56N']
valid_months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
valid_colors = ['Dark', 'Medium', 'Light']
if group not in valid_groups:
return False, f"Invalid {'wall' if is_wall else 'roof'} group: {group}. Valid groups: {valid_groups}"
if orientation not in valid_orientations:
return False, f"Invalid orientation: {orientation}. Valid orientations: {valid_orientations}"
if hour not in range(24):
return False, "Hour must be between 0 and 23."
# Handle numeric latitude values and ensure comprehensive mapping
if latitude not in valid_latitudes:
# Try to convert numeric latitude to standard format
try:
# First, handle string representations that might contain direction indicators
if isinstance(latitude, str):
# Extract numeric part, removing 'N' or 'S'
lat_str = latitude.upper().strip()
num_part = ''.join(c for c in lat_str if c.isdigit() or c == '.')
lat_val = float(num_part)
# Adjust for southern hemisphere if needed
if 'S' in lat_str:
lat_val = -lat_val
else:
# Handle direct numeric input
lat_val = float(latitude)
# Take absolute value for mapping purposes
abs_lat = abs(lat_val)
# Map to the closest standard latitude
if abs_lat < 28:
mapped_latitude = '24N'
elif abs_lat < 36:
mapped_latitude = '32N'
elif abs_lat < 44:
mapped_latitude = '40N'
elif abs_lat < 52:
mapped_latitude = '48N'
else:
mapped_latitude = '56N'
# Use the mapped latitude for validation
latitude = mapped_latitude
except (ValueError, TypeError):
return False, f"Invalid latitude: {latitude}. Valid latitudes: {valid_latitudes}"
if latitude not in valid_latitudes:
return False, f"Invalid latitude: {latitude}. Valid latitudes: {valid_latitudes}"
if month not in valid_months:
return False, f"Invalid month: {month}. Valid months: {valid_months}"
if color not in valid_colors:
return False, f"Invalid color: {color}. Valid colors: {valid_colors}"
return True, "Valid inputs."
def _load_cltd_wall_table(self) -> Dict[str, pd.DataFrame]:
"""
Load CLTD tables for walls at 24°N (July).
Returns: Dictionary of DataFrames with CLTD values for each wall group.
"""
hours = list(range(24))
# CLTD data for wall types 1-12 mapped to groups A-H
wall_data = {
"A": { # Type 1: Lightest construction
'N': [1, 0, -1, -2, -3, -2, 5, 13, 17, 18, 19, 22, 26, 28, 30, 32, 34, 34, 27, 17, 11, 7, 5, 3],
'NE': [1, 0, -1, -2, -3, 0, 17, 39, 51, 53, 48, 39, 32, 30, 30, 30, 30, 28, 24, 18, 13, 10, 7, 5],
'E': [1, 0, -1, -2, -3, 0, 18, 44, 59, 63, 59, 48, 36, 32, 31, 30, 32, 32, 29, 24, 19, 13, 10, 7],
'SE': [1, 0, -1, -2, -3, -2, 8, 25, 38, 44, 45, 42, 35, 32, 31, 30, 32, 32, 27, 24, 18, 13, 10, 7],
'S': [1, 0, -1, -2, -3, -3, -1, 3, 8, 12, 18, 24, 29, 31, 31, 30, 32, 32, 27, 23, 18, 13, 9, 7],
'SW': [1, 0, 1, 2, 3, 3, 1, 3, 8, 13, 17, 22, 27, 42, 59, 73, 30, 32, 27, 23, 18, 20, 12, 8],
'W': [2, 0, 2, 2, 3, 1, 3, 8, 13, 17, 22, 27, 42, 59, 73, 30, 32, 27, 23, 18, 20, 12, 8, 5],
'NW': [2, 0, 1, 2, 2, 3, 1, 3, 8, 13, 17, 22, 27, 42, 59, 73, 30, 32, 27, 23, 18, 20, 12, 8]
},
"B": { # Type 2
'N': [2, 1, 0, -1, -2, -1, 6, 14, 18, 19, 20, 23, 27, 29, 31, 33, 35, 35, 28, 18, 12, 8, 6, 4],
'NE': [2, 1, 0, -1, -2, 1, 18, 40, 52, 54, 49, 40, 33, 31, 31, 31, 31, 29, 25, 19, 14, 11, 8, 6],
'E': [2, 1, 0, -1, -2, 1, 19, 45, 60, 64, 60, 49, 37, 33, 32, 31, 33, 33, 30, 25, 20, 14, 11, 8],
'SE': [2, 1, 0, -1, -2, -1, 9, 26, 39, 45, 46, 43, 36, 33, 32, 31, 33, 33, 28, 25, 19, 14, 11, 8],
'S': [2, 1, 0, -1, -2, -2, 0, 4, 9, 13, 19, 25, 30, 32, 32, 31, 33, 33, 28, 24, 19, 14, 10, 8],
'SW': [2, 1, 2, 3, 4, 4, 2, 4, 9, 14, 18, 23, 28, 43, 60, 74, 31, 33, 28, 24, 19, 21, 13, 9],
'W': [3, 1, 3, 3, 4, 2, 4, 9, 14, 18, 23, 28, 43, 60, 74, 31, 33, 28, 24, 19, 21, 13, 9, 6],
'NW': [3, 1, 2, 3, 3, 4, 2, 4, 9, 14, 18, 23, 28, 43, 60, 74, 31, 33, 28, 24, 19, 21, 13, 9]
},
"C": { # Type 3
'N': [3, 2, 1, 0, -1, 0, 7, 15, 19, 20, 21, 24, 28, 30, 32, 34, 36, 36, 29, 19, 13, 9, 7, 5],
'NE': [3, 2, 1, 0, -1, 2, 19, 41, 53, 55, 50, 41, 34, 32, 32, 32, 32, 30, 26, 20, 15, 12, 9, 7],
'E': [3, 2, 1, 0, -1, 2, 20, 46, 61, 65, 61, 50, 38, 34, 33, 32, 34, 34, 31, 26, 21, 15, 12, 9],
'SE': [3, 2, 1, 0, -1, 0, 10, 27, 40, 46, 47, 44, 37, 34, 33, 32, 34, 34, 29, 26, 20, 15, 12, 9],
'S': [3, 2, 1, 0, -1, -1, 1, 5, 10, 14, 20, 26, 31, 33, 33, 32, 34, 34, 29, 25, 20, 15, 11, 9],
'SW': [3, 2, 3, 4, 5, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10],
'W': [4, 2, 4, 4, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10, 7],
'NW': [4, 2, 3, 4, 4, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10]
},
"D": { # Type 4
'N': [4, 3, 2, 1, 0, 1, 8, 16, 20, 21, 22, 25, 29, 31, 33, 35, 37, 37, 30, 20, 14, 10, 8, 6],
'NE': [4, 3, 2, 1, 0, 3, 20, 42, 54, 56, 51, 42, 35, 33, 33, 33, 33, 31, 27, 21, 16, 13, 10, 8],
'E': [4, 3, 2, 1, 0, 3, 21, 47, 62, 66, 62, 51, 39, 35, 34, 33, 35, 35, 32, 27, 22, 16, 13, 10],
'SE': [4, 3, 2, 1, 0, 1, 11, 28, 41, 47, 48, 45, 38, 35, 34, 33, 35, 35, 30, 27, 21, 16, 13, 10],
'S': [4, 3, 2, 1, 0, 0, 2, 6, 11, 15, 21, 27, 32, 34, 34, 33, 35, 35, 30, 26, 21, 16, 12, 10],
'SW': [4, 3, 4, 5, 6, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11],
'W': [5, 3, 5, 5, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11, 8],
'NW': [5, 3, 4, 5, 5, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11]
},
"E": { # Type 5
'N': [13, 11, 9, 7, 5, 3, 2, 3, 5, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 27, 25, 22, 20, 16],
'NE': [13, 11, 8, 7, 5, 3, 3, 6, 12, 20, 26, 31, 33, 33, 32, 32, 32, 33, 31, 29, 27, 24, 21, 18],
'E': [14, 11, 9, 7, 5, 4, 3, 6, 13, 22, 31, 36, 39, 39, 39, 39, 39, 31, 31, 29, 26, 22, 19, 18],
'SE': [13, 10, 8, 6, 5, 3, 2, 4, 8, 14, 20, 25, 28, 30, 30, 30, 30, 30, 28, 26, 24, 21, 18, 16],
'S': [11, 9, 7, 6, 4, 3, 2, 1, 1, 3, 5, 7, 11, 14, 16, 20, 22, 23, 23, 23, 20, 18, 16, 14],
'SW': [18, 15, 12, 9, 7, 5, 3, 3, 3, 4, 5, 8, 11, 14, 16, 20, 26, 32, 33, 31, 41, 40, 36, 31],
'W': [23, 19, 15, 12, 9, 7, 5, 4, 4, 4, 6, 8, 11, 14, 16, 20, 28, 37, 35, 31, 51, 41, 41, 41],
'NW': [21, 17, 14, 11, 8, 6, 4, 3, 3, 4, 6, 8, 11, 14, 16, 20, 28, 37, 35, 31, 41, 41, 41, 41]
},
"F": { # Type 6
'N': [10, 8, 6, 4, 2, 1, 1, 2, 4, 6, 9, 11, 13, 15, 18, 20, 22, 24, 26, 26, 24, 21, 19, 15],
'NE': [10, 8, 6, 4, 2, 2, 2, 5, 11, 19, 25, 30, 32, 32, 31, 31, 31, 32, 30, 28, 26, 23, 20, 17],
'E': [11, 8, 6, 4, 2, 3, 2, 5, 12, 21, 30, 35, 38, 38, 38, 38, 38, 30, 30, 28, 25, 21, 18, 17],
'SE': [10, 7, 5, 3, 2, 2, 1, 3, 7, 13, 19, 24, 27, 29, 29, 29, 29, 29, 27, 25, 23, 20, 17, 15],
'S': [8, 6, 4, 3, 1, 2, 1, 0, 0, 2, 4, 6, 10, 13, 15, 19, 21, 22, 22, 22, 19, 17, 15, 13],
'SW': [15, 12, 9, 6, 4, 3, 2, 2, 2, 3, 4, 7, 10, 13, 15, 19, 25, 31, 32, 30, 40, 39, 35, 30],
'W': [20, 16, 12, 9, 6, 4, 3, 3, 3, 3, 5, 7, 10, 13, 15, 19, 27, 36, 34, 30, 50, 40, 40, 40],
'NW': [18, 14, 11, 8, 5, 4, 3, 2, 2, 3, 5, 7, 10, 13, 15, 19, 27, 36, 34, 30, 40, 40, 40, 40]
},
"G": { # Type 7
'N': [7, 5, 3, 1, -1, 0, 0, 1, 3, 5, 8, 10, 12, 14, 17, 19, 21, 23, 25, 25, 23, 20, 18, 14],
'NE': [7, 5, 3, 1, -1, 1, 1, 4, 10, 18, 24, 29, 31, 31, 30, 30, 30, 31, 29, 27, 25, 22, 19, 16],
'E': [8, 5, 3, 1, -1, 2, 1, 4, 11, 20, 29, 34, 37, 37, 37, 37, 37, 29, 29, 27, 24, 20, 17, 16],
'SE': [7, 4, 2, 0, -1, 1, 0, 2, 6, 12, 18, 23, 26, 28, 28, 28, 28, 28, 26, 24, 22, 19, 16, 14],
'S': [5, 3, 1, 0, -2, 1, 0, -1, -1, 1, 3, 5, 9, 12, 14, 18, 20, 21, 21, 21, 18, 16, 14, 12],
'SW': [12, 9, 6, 3, 1, 2, 1, 1, 1, 2, 3, 6, 9, 12, 14, 18, 24, 30, 31, 29, 39, 38, 34, 29],
'W': [17, 13, 9, 6, 3, 2, 2, 2, 2, 2, 4, 6, 9, 12, 14, 18, 26, 35, 33, 29, 49, 39, 39, 39],
'NW': [15, 11, 8, 5, 2, 3, 2, 1, 1, 2, 4, 6, 9, 12, 14, 18, 26, 35, 33, 29, 39, 39, 39, 39]
},
"H": { # Interpolated from types 8-12: Heaviest construction
'N': [4, 2, 0, -2, -4, -1, -1, 0, 2, 4, 7, 9, 11, 13, 16, 18, 20, 22, 24, 24, 22, 19, 17, 13],
'NE': [4, 2, 0, -2, -4, 0, 0, 3, 9, 17, 23, 28, 30, 30, 29, 29, 29, 30, 28, 26, 24, 21, 18, 15],
'E': [5, 2, 0, -2, -4, 1, 0, 3, 10, 19, 28, 33, 36, 36, 36, 36, 36, 28, 28, 26, 23, 19, 16, 15],
'SE': [4, 1, -1, -3, -4, 0, -1, 1, 5, 11, 17, 22, 25, 27, 27, 27, 27, 27, 25, 23, 21, 18, 15, 13],
'S': [2, 0, -2, -3, -5, 0, -1, -2, -2, 0, 2, 4, 8, 11, 13, 17, 19, 20, 20, 20, 17, 15, 13, 11],
'SW': [9, 6, 3, 0, -2, 1, 0, 0, 0, 1, 2, 5, 8, 11, 13, 17, 23, 29, 30, 28, 38, 37, 33, 28],
'W': [14, 10, 6, 3, 0, 1, 1, 1, 1, 1, 3, 5, 8, 11, 13, 17, 25, 34, 32, 28, 48, 38, 38, 38],
'NW': [12, 8, 5, 2, -1, 2, 1, 0, 0, 1, 3, 5, 8, 11, 13, 17, 25, 34, 32, 28, 38, 38, 38, 38]
}
}
wall_groups = {group: pd.DataFrame(data, index=hours) for group, data in wall_data.items()}
return wall_groups
def _load_cltd_roof_table(self) -> Dict[str, pd.DataFrame]:
"""
Load CLTD tables for roofs at 24°N, 36°N, 48°N (July).
Returns: Dictionary of DataFrames with CLTD values for each roof group and latitude.
"""
hours = list(range(24))
# CLTD data for roof types mapped to groups A-G across latitudes
roof_data = {
"24N": {
"A": [0, 4, 5, 6, 6, 3, 9, 16, 44, 62, 76, 87, 92, 92, 86, 74, 58, 39, 23, 14, 8, 4, 2, 0], # Type 1
"B": [12, 8, 5, 2, 0, -2, -2, 3, 11, 22, 35, 47, 59, 68, 74, 77, 74, 68, 58, 47, 37, 29, 22, 16], # Type 3
"C": [21, 16, 12, 8, 5, 3, 1, 1, 1, 10, 19, 20, 22, 23, 49, 49, 54, 58, 58, 56, 52, 47, 42, 37], # Type 5
"D": [31, 25, 20, 16, 12, 9, 6, 4, 3, 5, 10, 17, 26, 36, 46, 54, 61, 65, 66, 63, 58, 51, 44, 47], # Type 9
"E": [34, 31, 28, 25, 22, 20, 17, 16, 15, 19, 23, 28, 29, 32, 38, 38, 43, 43, 49, 49, 49, 46, 43, 40], # Type 13
"F": [35, 32, 30, 28, 25, 23, 21, 19, 20, 22, 23, 23, 24, 25, 39, 39, 40, 40, 40, 45, 46, 46, 44, 42], # Type 14
"G": [36, 33, 31, 29, 27, 25, 23, 21, 20, 22, 24, 25, 26, 27, 40, 41, 42, 42, 42, 47, 48, 48, 45, 43] # Interpolated
},
"36N": {
"A": [0, 2, 4, 5, 6, 6, 12, 28, 45, 61, 75, 84, 90, 90, 84, 79, 71, 62, 66, 59, 50, 42, 47, 0], # Type 1
"B": [12, 8, 5, 2, 0, -2, -1, 14, 13, 24, 25, 26, 27, 28, 38, 39, 40, 40, 43, 45, 46, 46, 43, 40], # Type 3
"C": [21, 16, 12, 8, 5, 3, 1, 12, 15, 12, 21, 22, 23, 32, 39, 40, 40, 40, 40, 45, 46, 46, 43, 40], # Type 5
"D": [32, 26, 21, 16, 13, 10, 8, 14, 17, 19, 20, 22, 23, 24, 39, 40, 40, 40, 40, 45, 46, 46, 43, 40], # Type 9
"E": [34, 31, 28, 25, 23, 20, 18, 16, 16, 20, 22, 22, 23, 24, 39, 39, 40, 40, 40, 45, 46, 46, 44, 42], # Type 13
"F": [35, 32, 30, 28, 25, 23, 21, 19, 20, 22, 23, 23, 24, 25, 39, 39, 40, 40, 40, 45, 46, 46, 44, 42], # Type 14
"G": [36, 33, 31, 29, 27, 25, 23, 21, 20, 22, 24, 25, 26, 27, 40, 41, 42, 42, 42, 47, 48, 48, 45, 43] # Interpolated
},
"48N": {
"A": [0, 2, 4, 5, 6, 5, 3, 15, 29, 44, 58, 69, 78, 83, 83, 79, 71, 59, 44, 49, 49, 49, 5, 2], # Type 1
"B": [12, 8, 5, 2, 0, -1, 1, 16, 16, 20, 22, 23, 24, 25, 39, 39, 40, 40, 40, 45, 46, 46, 43, 40], # Type 3
"C": [21, 16, 12, 8, 5, 3, 2, 16, 19, 20, 22, 23, 24, 25, 39, 39, 40, 40, 40, 45, 46, 46, 43, 40], # Type 5
"D": [31, 26, 21, 16, 12, 9, 6, 5, 5, 20, 22, 23, 24, 25, 39, 39, 40, 40, 40, 45, 46, 46, 43, 40], # Type 9
"E": [33, 30, 27, 25, 22, 20, 17, 16, 16, 20, 22, 23, 24, 25, 39, 39, 40, 40, 40, 47, 48, 47, 45, 40], # Type 13
"F": [34, 32, 29, 27, 25, 23, 21, 20, 19, 20, 22, 23, 24, 25, 39, 39, 40, 40, 40, 48, 48, 48, 43, 40], # Type 14
"G": [35, 33, 31, 29, 27, 25, 23, 21, 20, 22, 24, 25, 26, 27, 40, 41, 42, 42, 42, 48, 49, 49, 45, 43] # Interpolated
}
}
roof_groups = {}
for lat, groups in roof_data.items():
for group, data in groups.items():
roof_groups[f"{group}_{lat}"] = pd.DataFrame({"HOR": data}, index=hours)
return roof_groups
def _load_scl_table(self) -> Dict[str, pd.DataFrame]:
"""
Load SCL (Solar Cooling Load) tables for windows.
Returns: Dictionary of DataFrames with SCL values for each latitude/month.
"""
hours = list(range(24))
# Base SCL data for 40°N (July)
scl_40n_jul = {
"N": [11, 8, 6, 6, 6, 9, 13, 16, 19, 21, 22, 23, 23, 22, 20, 17, 14, 11, 11, 11, 11, 11, 11, 11],
"NE": [11, 8, 6, 6, 6, 19, 75, 113, 121, 103, 75, 40, 31, 27, 23, 19, 14, 11, 11, 11, 11, 11, 11, 11],
"E": [11, 8, 6, 6, 6, 13, 55, 159, 232, 251, 222, 157, 82, 43, 32, 24, 17, 11, 11, 11, 11, 11, 11, 11],
"SE": [11, 8, 6, 6, 6, 10, 33, 98, 187, 251, 276, 264, 214, 139, 74, 37, 21, 11, 11, 11, 11, 11, 11, 11],
"S": [11, 8, 6, 6, 6, 8, 14, 27, 66, 139, 209, 254, 268, 251, 203, 139, 66, 27, 14, 11, 11, 11, 11, 11],
"SW": [11, 8, 6, 6, 6, 8, 14, 19, 24, 37, 74, 139, 214, 264, 276, 251, 187, 98, 33, 14, 11, 11, 11, 11],
"W": [11, 8, 6, 6, 6, 8, 14, 19, 24, 32, 43, 82, 157, 222, 251, 232, 159, 55, 13, 11, 11, 11, 11, 11],
"NW": [11, 8, 6, 6, 6, 8, 14, 19, 24, 27, 31, 40, 75, 103, 121, 113, 75, 19, 11, 11, 11, 11, 11, 11],
"HOR": [11, 8, 6, 6, 6, 19, 69, 135, 201, 254, 290, 308, 308, 290, 254, 201, 135, 69, 19, 11, 11, 11, 11, 11]
}
scl_tables = {"40N_Jul": pd.DataFrame(scl_40n_jul, index=hours)}
latitudes = ["24N", "32N", "40N", "48N", "56N"]
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
for lat in latitudes:
for month in months:
key = f"{lat}_{month}"
if key == "40N_Jul":
continue
lat_factor = (40 - float(lat[:-1])) / 40
month_idx = months.index(month)
month_factor = 1 + (month_idx - 6) / 24
scl_data = {}
for orient in scl_40n_jul:
base_scl = scl_40n_jul[orient]
scl_data[orient] = [max(6, round(v * (1 - lat_factor * 0.2) * month_factor)) for v in base_scl]
scl_tables[key] = pd.DataFrame(scl_data, index=hours)
return scl_tables
def _load_clf_lights_table(self) -> pd.DataFrame:
"""
Load CLF (Cooling Load Factor) table for lights.
Returns: DataFrame with CLF values for lights by zone type and hours.
"""
hours = list(range(24))
clf_lights_data = {
"A_8h": [0.85, 0.92, 0.95, 0.95, 0.97, 0.97, 0.98, 0.13, 0.06, 0.04, 0.03, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
"A_10h": [0.85, 0.93, 0.95, 0.97, 0.97, 0.98, 0.98, 0.98, 0.98, 0.98, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
"A_12h": [0.86, 0.93, 0.96, 0.97, 0.97, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
"B_8h": [0.75, 0.85, 0.90, 0.93, 0.94, 0.95, 0.95, 0.95, 0.12, 0.08, 0.05, 0.04, 0.04, 0.03, 0.03, 0.03, 0.03, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
"B_10h": [0.75, 0.86, 0.91, 0.93, 0.94, 0.95, 0.95, 0.95, 0.96, 0.97, 0.24, 0.13, 0.08, 0.06, 0.05, 0.04, 0.04, 0.03, 0.03, 0.03, 0.03, 0.03, 0.02, 0.02],
"B_12h": [0.76, 0.86, 0.91, 0.93, 0.95, 0.95, 0.95, 0.95, 0.97, 0.97, 0.97, 0.97, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03],
"C_8h": [0.70, 0.80, 0.85, 0.88, 0.90, 0.92, 0.93, 0.94, 0.10, 0.07, 0.04, 0.03, 0.03, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
"C_10h": [0.70, 0.81, 0.86, 0.89, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.20, 0.11, 0.07, 0.05, 0.04, 0.03, 0.03, 0.02, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01],
"C_12h": [0.71, 0.82, 0.87, 0.90, 0.92, 0.93, 0.94, 0.95, 0.96, 0.96, 0.96, 0.96, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
"D_8h": [0.65, 0.75, 0.80, 0.83, 0.85, 0.87, 0.88, 0.89, 0.08, 0.06, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
"D_10h": [0.65, 0.76, 0.81, 0.84, 0.86, 0.88, 0.89, 0.90, 0.91, 0.92, 0.16, 0.09, 0.06, 0.04, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
"D_12h": [0.66, 0.77, 0.82, 0.85, 0.87, 0.89, 0.90, 0.91, 0.92, 0.92, 0.92, 0.92, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]
}
return pd.DataFrame(clf_lights_data, index=hours)
def _load_clf_people_table(self) -> pd.DataFrame:
"""
Load CLF (Cooling Load Factor) table for people.
Returns: DataFrame with CLF values for people by zone type and hours.
"""
hours = list(range(24))
clf_people_data = {
"A_2h": [0.75, 0.88, 0.18, 0.08, 0.04, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
"A_4h": [0.75, 0.88, 0.93, 0.95, 0.97, 0.10, 0.05, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
"A_6h": [0.75, 0.88, 0.93, 0.95, 0.97, 0.97, 0.33, 0.11, 0.06, 0.04, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00],
"B_2h": [0.65, 0.75, 0.81, 0.85, 0.89, 0.91, 0.93, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02],
"B_4h": [0.65, 0.75, 0.82, 0.87, 0.90, 0.92, 0.94, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
"B_6h": [0.65, 0.75, 0.82, 0.87, 0.90, 0.92, 0.94, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
"C_2h": [0.60, 0.70, 0.76, 0.80, 0.84, 0.86, 0.88, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01],
"C_4h": [0.60, 0.70, 0.77, 0.82, 0.85, 0.87, 0.89, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
"C_6h": [0.60, 0.70, 0.77, 0.82, 0.85, 0.87, 0.89, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
"D_2h": [0.55, 0.65, 0.71, 0.75, 0.79, 0.81, 0.83, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00],
"D_4h": [0.55, 0.65, 0.72, 0.77, 0.80, 0.82, 0.84, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
"D_6h": [0.55, 0.65, 0.72, 0.77, 0.80, 0.82, 0.84, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]
}
return pd.DataFrame(clf_people_data, index=hours)
def _load_clf_equipment_table(self) -> pd.DataFrame:
"""
Load CLF (Cooling Load Factor) table for equipment.
Returns: DataFrame with CLF values for equipment by zone type and hours.
"""
hours = list(range(24))
clf_equipment_data = {
"A_2h": [0.54, 0.83, 0.26, 0.11, 0.05, 0.03, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
"A_4h": [0.64, 0.83, 0.90, 0.93, 0.31, 0.14, 0.07, 0.04, 0.03, 0.03, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
"A_6h": [0.64, 0.83, 0.90, 0.93, 0.95, 0.95, 0.33, 0.11, 0.06, 0.04, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00],
"B_2h": [0.50, 0.75, 0.81, 0.85, 0.89, 0.91, 0.93, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02],
"B_4h": [0.50, 0.75, 0.82, 0.87, 0.90, 0.92, 0.94, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
"B_6h": [0.50, 0.75, 0.82, 0.87, 0.90, 0.92, 0.94, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
"C_2h": [0.46, 0.70, 0.76, 0.80, 0.84, 0.86, 0.88, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01],
"C_4h": [0.46, 0.70, 0.77, 0.82, 0.85, 0.87, 0.89, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
"C_6h": [0.46, 0.70, 0.77, 0.82, 0.85, 0.87, 0.89, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
"D_2h": [0.42, 0.65, 0.71, 0.75, 0.79, 0.81, 0.83, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00],
"D_4h": [0.42, 0.65, 0.72, 0.77, 0.80, 0.82, 0.84, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
"D_6h": [0.42, 0.65, 0.72, 0.77, 0.80, 0.82, 0.84, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]
}
return pd.DataFrame(clf_equipment_data, index=hours)
def _load_heat_gain_table(self) -> pd.DataFrame:
"""
Load heat gain table for internal sources.
Returns: DataFrame with heat gain values (Btu/h or Btu/h-ft²).
"""
data = {
"source": ["people_sensible", "people_latent", "lights", "equipment"],
"gain": [250, 200, 3.4, 500]
}
return pd.DataFrame(data)
def _load_thermal_properties(self) -> pd.DataFrame:
"""
Load thermal properties for building materials.
Returns: DataFrame with U-values, R-values, and density.
"""
data = {
"material": [
"Brick_4in", "Brick_8in", "Concrete_6in", "Concrete_12in",
"Wood_1in", "Wood_2in", "Insulation_1in", "Insulation_2in",
"Gypsum_0.5in", "Steel_1in"
],
"U_value": [0.45, 0.32, 0.51, 0.48, 0.12, 0.08, 0.03, 0.015, 0.32, 0.65], # Btu/h-ft²-°F
"R_value": [2.22, 3.13, 1.96, 2.08, 8.33, 12.5, 33.33, 66.67, 3.13, 1.54], # ft²-°F-h/Btu
"density": [120, 120, 140, 140, 35, 35, 1.5, 1.5, 40, 490] # lb/ft³
}
return pd.DataFrame(data)
def _load_roof_classifications(self) -> pd.DataFrame:
"""
Load roof classification data.
Returns: DataFrame with roof type descriptions and properties.
"""
data = {
"type": [1, 2, 3, 4, 5, 8, 9, 10, 13, 14],
"description": [
"Light roof, no insulation", "Light roof, minimal insulation",
"Medium roof, R-10 insulation", "Medium roof, R-15 insulation",
"Heavy roof, R-20 insulation", "Heavy roof, R-25 insulation",
"Concrete slab, R-15 insulation", "Concrete slab, R-20 insulation",
"Metal deck, R-30 insulation", "Metal deck, R-35 insulation"
],
"U_value": [0.5, 0.4, 0.3, 0.25, 0.2, 0.15, 0.18, 0.14, 0.1, 0.08],
"mass": [10, 15, 50, 60, 100, 120, 150, 160, 80, 90] # lb/ft²
}
return pd.DataFrame(data)
def _load_latitude_correction(self) -> Dict[str, Dict[str, float]]:
"""
Load latitude correction factors for CLTD/SCL values.
Returns: Dictionary of correction factors for different latitudes and months.
"""
return {
"24N": {"Jan": -5.0, "Feb": -3.5, "Mar": -1.0, "Apr": 2.0, "May": 4.0, "Jun": 5.0, "Jul": 4.5, "Aug": 3.0, "Sep": 1.0, "Oct": -1.5, "Nov": -4.0, "Dec": -5.5},
"32N": {"Jan": -4.0, "Feb": -2.5, "Mar": 0.0, "Apr": 2.5, "May": 4.5, "Jun": 5.5, "Jul": 5.0, "Aug": 3.5, "Sep": 1.5, "Oct": -0.5, "Nov": -3.0, "Dec": -4.5},
"40N": {"Jan": -3.0, "Feb": -1.5, "Mar": 1.0, "Apr": 3.0, "May": 5.0, "Jun": 6.0, "Jul": 5.5, "Aug": 4.0, "Sep": 2.0, "Oct": 0.0, "Nov": -2.0, "Dec": -3.5},
"48N": {"Jan": -2.0, "Feb": -0.5, "Mar": 2.0, "Apr": 4.0, "May": 6.0, "Jun": 7.0, "Jul": 6.5, "Aug": 5.0, "Sep": 3.0, "Oct": 1.0, "Nov": -1.0, "Dec": -2.5},
"56N": {"Jan": -1.0, "Feb": 0.5, "Mar": 3.0, "Apr": 5.0, "May": 7.0, "Jun": 8.0, "Jul": 7.5, "Aug": 6.0, "Sep": 4.0, "Oct": 2.0, "Nov": 0.0, "Dec": -1.5}
}
def _load_color_correction(self) -> Dict[str, float]:
"""
Load color correction factors for CLTD values.
Returns: Dictionary of correction factors for different colors.
"""
return {"Dark": 0.0, "Medium": -1.0, "Light": -2.0}
def _load_month_correction(self) -> Dict[str, float]:
"""
Load month correction factors for CLTD values.
Returns: Dictionary of correction factors for different months.
"""
return {
"Jan": -6.0, "Feb": -5.0, "Mar": -3.0, "Apr": -1.0, "May": 1.0,
"Jun": 2.0, "Jul": 2.0, "Aug": 2.0, "Sep": 1.0, "Oct": -1.0,
"Nov": -3.0, "Dec": -5.0
}
def _apply_climatic_corrections(self, cltd: float, latitude: str, month: str, color: str, outdoor_temp: float, indoor_temp: float) -> float:
"""
Apply climatic corrections to CLTD values based on latitude, month, color, and temperature.
Args:
cltd (float): Base CLTD value.
latitude (str): Latitude (e.g., '32N').
month (str): Month (e.g., 'Jul').
color (str): Surface color ('Dark', 'Medium', 'Light').
outdoor_temp (float): Outdoor design temperature (°C).
indoor_temp (float): Indoor design temperature (°C).
Returns:
float: Corrected CLTD value (°C).
"""
try:
# Convert temperatures to °F for ASHRAE corrections
outdoor_temp_f = outdoor_temp * 9/5 + 32
indoor_temp_f = indoor_temp * 9/5 + 32
# Get correction factors
lat_corr = self.latitude_correction.get(latitude, {}).get(month, 0.0)
month_corr = self.month_correction.get(month, 0.0)
color_corr = self.color_correction.get(color, 0.0)
# Apply temperature difference correction (ASHRAE CLTD correction formula)
temp_diff = outdoor_temp_f - indoor_temp_f
design_temp_diff = 85 - 78 # ASHRAE base conditions: 85°F outdoor, 78°F indoor
temp_corr = (temp_diff - design_temp_diff) * 0.5556 # Convert °F to °C
# Total correction
corrected_cltd = cltd + lat_corr + month_corr + color_corr + temp_corr
# Ensure non-negative CLTD
return max(0.0, corrected_cltd)
except Exception as e:
raise ValueError(f"Error applying climatic corrections: {str(e)}")
def get_cltd_wall(self, wall_group: str, orientation: str, hour: int) -> float:
"""Get CLTD value for a wall."""
if wall_group not in self.cltd_wall:
raise ValueError(f"Invalid wall group: {wall_group}")
orientation_map = {e.value: e.name for e in Orientation}
orientation_abbr = orientation_map.get(orientation, orientation)
if orientation_abbr not in self.cltd_wall[wall_group].columns:
raise ValueError(f"Invalid orientation: {orientation}")
if hour not in self.cltd_wall[wall_group].index:
raise ValueError(f"Invalid hour: {hour}")
return float(self.cltd_wall[wall_group].loc[hour, orientation_abbr])
def get_cltd_roof(self, roof_group: str, latitude: str, hour: int) -> float:
"""Get CLTD value for a roof."""
# Map latitude to standard format before forming the key
valid_latitudes = ['24N', '36N', '48N']
# Handle numeric or non-standard latitude values
if latitude not in valid_latitudes:
# Try to convert to standard format
try:
# First, handle string representations that might contain direction indicators
if isinstance(latitude, str):
# Extract numeric part, removing 'N' or 'S'
lat_str = latitude.upper().strip()
num_part = ''.join(c for c in lat_str if c.isdigit() or c == '.')
lat_val = float(num_part)
# Adjust for southern hemisphere if needed
if 'S' in lat_str:
lat_val = -lat_val
else:
# Handle direct numeric input
lat_val = float(latitude)
# Take absolute value for mapping purposes
abs_lat = abs(lat_val)
# Map to the closest standard latitude for roof data
if abs_lat < 30:
latitude = '24N'
elif abs_lat < 42:
latitude = '36N'
else:
latitude = '48N'
except (ValueError, TypeError):
raise ValueError(f"Invalid latitude format: {latitude}")
key = f"{roof_group}_{latitude}"
if key not in self.cltd_roof:
raise ValueError(f"Invalid roof group or latitude: {key}")
if hour not in self.cltd_roof[key].index:
raise ValueError(f"Invalid hour: {hour}")
return float(self.cltd_roof[key].loc[hour, "HOR"])
def get_scl(self, latitude: str, month: str, orientation: str, hour: int) -> float:
"""Get SCL value for a window."""
# Map latitude to standard format before forming the key
valid_latitudes = ['24N', '32N', '40N', '48N', '56N']
# Handle numeric or non-standard latitude values
if latitude not in valid_latitudes:
# Try to convert to standard format
try:
# First, handle string representations that might contain direction indicators
if isinstance(latitude, str):
# Extract numeric part, removing 'N' or 'S'
lat_str = latitude.upper().strip()
num_part = ''.join(c for c in lat_str if c.isdigit() or c == '.')
lat_val = float(num_part)
# Adjust for southern hemisphere if needed
if 'S' in lat_str:
lat_val = -lat_val
else:
# Handle direct numeric input
lat_val = float(latitude)
# Take absolute value for mapping purposes
abs_lat = abs(lat_val)
# Map to the closest standard latitude for SCL data
if abs_lat < 28:
latitude = '24N'
elif abs_lat < 36:
latitude = '32N'
elif abs_lat < 44:
latitude = '40N'
elif abs_lat < 52:
latitude = '48N'
else:
latitude = '56N'
except (ValueError, TypeError):
raise ValueError(f"Invalid latitude format: {latitude}")
key = f"{latitude}_{month}"
if key not in self.scl:
raise ValueError(f"Invalid latitude or month: {key}")
orientation_map = {e.value: e.name for e in Orientation}
orientation_abbr = orientation_map.get(orientation, orientation)
if orientation_abbr not in self.scl[key].columns:
raise ValueError(f"Invalid orientation: {orientation}")
if hour not in self.scl[key].index:
raise ValueError(f"Invalid hour: {hour}")
return float(self.scl[key].loc[hour, orientation_abbr])
def get_clf_lights(self, zone_type: str, hours_on: str, hour: int) -> float:
"""Get CLF value for lights."""
key = f"{zone_type}_{hours_on}"
if key not in self.clf_lights.columns:
raise ValueError(f"Invalid zone type or hours: {key}")
if hour not in self.clf_lights.index:
raise ValueError(f"Invalid hour: {hour}")
return float(self.clf_lights.loc[hour, key])
def get_clf_people(self, zone_type: str, hours_occupied: str, hour: int) -> float:
"""Get CLF value for people."""
key = f"{zone_type}_{hours_occupied}"
if key not in self.clf_people.columns:
raise ValueError(f"Invalid zone type or hours: {key}")
if hour not in self.clf_people.index:
raise ValueError(f"Invalid hour: {hour}")
return float(self.clf_people.loc[hour, key])
def get_clf_equipment(self, zone_type: str, hours_operated: str, hour: int) -> float:
"""Get CLF value for equipment."""
key = f"{zone_type}_{hours_operated}"
if key not in self.clf_equipment.columns:
raise ValueError(f"Invalid zone type or hours: {key}")
if hour not in self.clf_equipment.index:
raise ValueError(f"Invalid hour: {hour}")
return float(self.clf_equipment.loc[hour, key])
def get_thermal_property(self, material: str, property_type: str) -> float:
"""
Get thermal property for a material.
Args:
material (str): Material name (e.g., 'Brick_4in').
property_type (str): Property to retrieve ('U_value', 'R_value', 'density').
Returns:
float: Value of the specified thermal property.
Raises:
ValueError: If material or property_type is invalid.
"""
if material not in self.thermal_properties['material'].values:
raise ValueError(f"Invalid material: {material}")
if property_type not in ['U_value', 'R_value', 'density']:
raise ValueError(f"Invalid property type: {property_type}")
return float(self.thermal_properties.loc[self.thermal_properties['material'] == material, property_type].iloc[0])
def get_heat_gain(self, source: str) -> float:
"""
Get heat gain value for an internal source.
Args:
source (str): Source type ('people_sensible', 'people_latent', 'lights', 'equipment').
Returns:
float: Heat gain value (Btu/h or Btu/h-ft²).
Raises:
ValueError: If source is invalid.
"""
if source not in self.heat_gain['source'].values:
raise ValueError(f"Invalid source: {source}")
return float(self.heat_gain.loc[self.heat_gain['source'] == source, 'gain'].iloc[0])
def plot_cooling_load(self, cooling_loads: List[float], title: str = "Cooling Load Profile", filename: str = "cooling_load.png") -> None:
"""
Plot the cooling load profile over 24 hours.
Args:
cooling_loads (List[float]): List of cooling load values for each hour.
title (str): Plot title.
filename (str): Output filename for the plot.
"""
if len(cooling_loads) != 24:
raise ValueError("Cooling loads must contain 24 hourly values")
plt.figure(figsize=(10, 6))
hours = list(range(24))
plt.plot(hours, cooling_loads, marker='o', linestyle='-', color='b')
plt.title(title)
plt.xlabel("Hour of Day")
plt.ylabel("Cooling Load (Btu/h)")
plt.grid(True)
plt.xticks(hours)
plt.savefig(filename)
plt.close()
def calculate_corrected_cltd_wall(self, wall_group: str, orientation: str, hour: int, latitude: str, month: str, color: str, outdoor_temp: float, indoor_temp: float) -> float:
"""
Calculate corrected CLTD for a wall with climatic corrections.
Args:
wall_group (str): Wall group (e.g., 'A', 'B', ..., 'H').
orientation (str): Wall orientation (e.g., 'North', 'East', etc.).
hour (int): Hour of the day (0-23).
latitude (str): Latitude (e.g., '32N').
month (str): Month (e.g., 'Jul').
color (str): Surface color ('Dark', 'Medium', 'Light').
outdoor_temp (float): Outdoor design temperature (°C).
indoor_temp (float): Indoor design temperature (°C).
Returns:
float: Corrected CLTD value (°C).
Raises:
ValueError: If inputs are invalid or correction fails.
"""
valid, message = self._validate_cltd_inputs(wall_group, orientation, hour, latitude, month, color, is_wall=True)
if not valid:
raise ValueError(message)
try:
# Get base CLTD
base_cltd = self.get_cltd_wall(wall_group, orientation, hour)
# Apply climatic corrections
corrected_cltd = self._apply_climatic_corrections(base_cltd, latitude, month, color, outdoor_temp, indoor_temp)
return corrected_cltd
except Exception as e:
raise ValueError(f"Error calculating corrected CLTD for wall: {str(e)}")
def calculate_corrected_cltd_roof(self, roof_group: str, latitude: str, hour: int, month: str, color: str, outdoor_temp: float, indoor_temp: float) -> float:
"""
Calculate corrected CLTD for a roof with climatic corrections.
Args:
roof_group (str): Roof group (e.g., 'A', 'B', ..., 'G').
latitude (str): Latitude (e.g., '24N', '36N', '48N').
hour (int): Hour of the day (0-23).
month (str): Month (e.g., 'Jul').
color (str): Surface color ('Dark', 'Medium', 'Light').
outdoor_temp (float): Outdoor design temperature (°C).
indoor_temp (float): Indoor design temperature (°C).
Returns:
float: Corrected CLTD value (°C).
Raises:
ValueError: If inputs are invalid or correction fails.
"""
valid, message = self._validate_cltd_inputs(roof_group, 'Horizontal', hour, latitude, month, color, is_wall=False)
if not valid:
raise ValueError(message)
try:
# Get base CLTD
base_cltd = self.get_cltd_roof(roof_group, latitude, hour)
# Apply climatic corrections
corrected_cltd = self._apply_climatic_corrections(base_cltd, latitude, month, color, outdoor_temp, indoor_temp)
return corrected_cltd
except Exception as e:
raise ValueError(f"Error calculating corrected CLTD for roof: {str(e)}")