HVAC-text-02 / app /results_display.py
mabuseif's picture
Upload 27 files
ca54a52 verified
"""
Results display module for HVAC Load Calculator.
This module provides the UI components for displaying calculation results.
"""
import streamlit as st
import pandas as pd
import numpy as np
from typing import Dict, List, Any, Optional, Tuple
import json
import os
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime
# Import visualization modules
from utils.component_visualization import ComponentVisualization
from utils.scenario_comparison import ScenarioComparisonVisualization
from utils.psychrometric_visualization import PsychrometricVisualization
from utils.time_based_visualization import TimeBasedVisualization
class ResultsDisplay:
"""Class for results display interface."""
def __init__(self):
"""Initialize results display interface."""
self.component_visualization = ComponentVisualization()
self.scenario_comparison = ScenarioComparisonVisualization()
self.psychrometric_visualization = PsychrometricVisualization()
self.time_based_visualization = TimeBasedVisualization()
def display_results(self, session_state: Dict[str, Any]) -> None:
"""
Display calculation results in Streamlit.
Args:
session_state: Streamlit session state containing calculation results
"""
st.header("Calculation Results")
# Check if calculations have been performed
if "calculation_results" not in session_state or not session_state["calculation_results"]:
st.warning("No calculation results available. Please run calculations first.")
return
# Create tabs for different result views
tab1, tab2, tab3, tab4, tab5 = st.tabs([
"Summary",
"Component Breakdown",
"Psychrometric Analysis",
"Time Analysis",
"Scenario Comparison"
])
with tab1:
self._display_summary_results(session_state)
with tab2:
self._display_component_breakdown(session_state)
with tab3:
self._display_psychrometric_analysis(session_state)
with tab4:
self._display_time_analysis(session_state)
with tab5:
self._display_scenario_comparison(session_state)
def _display_summary_results(self, session_state: Dict[str, Any]) -> None:
"""
Display summary of calculation results.
Args:
session_state: Streamlit session state containing calculation results
"""
st.subheader("Summary Results")
results = session_state["calculation_results"]
# Display project information
if "building_info" in session_state:
st.write(f"**Project:** {session_state['building_info']['project_name']}")
st.write(f"**Building:** {session_state['building_info']['building_name']}")
location = f"{session_state['building_info']['city']}, {session_state['building_info']['country']}"
st.write(f"**Location:** {location}")
st.write(f"**Climate Zone:** {session_state['building_info'].get('climate_zone', 'N/A')}")
st.write(f"**Floor Area:** {session_state['building_info']['floor_area']} m²")
# Create columns for cooling and heating loads
col1, col2 = st.columns(2)
with col1:
st.write("### Cooling Load Results")
# Check if cooling results are available
if not results.get("cooling") or "total_load" not in results["cooling"]:
st.warning("Cooling load results are not available. Please check calculation inputs and try again.")
else:
# Display cooling load metrics
cooling_metrics = [
{"name": "Total Cooling Load", "value": results["cooling"]["total_load"], "unit": "kW"},
{"name": "Sensible Cooling Load", "value": results["cooling"]["sensible_load"], "unit": "kW"},
{"name": "Latent Cooling Load", "value": results["cooling"]["latent_load"], "unit": "kW"},
{"name": "Cooling Load per Area", "value": results["cooling"]["load_per_area"], "unit": "W/m²"}
]
for metric in cooling_metrics:
st.metric(
label=metric["name"],
value=f"{metric['value']:.2f} {metric['unit']}"
)
# Display cooling load pie chart
cooling_breakdown = {
"Walls": results["cooling"]["component_loads"]["walls"],
"Roof": results["cooling"]["component_loads"]["roof"],
"Windows": results["cooling"]["component_loads"]["windows"],
"Doors": results["cooling"]["component_loads"]["doors"],
"People": results["cooling"]["component_loads"]["people"],
"Lighting": results["cooling"]["component_loads"]["lighting"],
"Equipment": results["cooling"]["component_loads"]["equipment"],
"Infiltration": results["cooling"]["component_loads"]["infiltration"],
"Ventilation": results["cooling"]["component_loads"]["ventilation"]
}
fig = px.pie(
values=list(cooling_breakdown.values()),
names=list(cooling_breakdown.keys()),
title="Cooling Load Breakdown",
color_discrete_sequence=px.colors.qualitative.Pastel
)
fig.update_traces(textposition='inside', textinfo='percent+label')
fig.update_layout(uniformtext_minsize=12, uniformtext_mode='hide')
st.plotly_chart(fig, use_container_width=True)
with col2:
st.write("### Heating Load Results")
# Check if heating results are available
if not results.get("heating") or "total_load" not in results["heating"]:
st.warning("Heating load results are not available. Please check calculation inputs and try again.")
else:
# Display heating load metrics
heating_metrics = [
{"name": "Total Heating Load", "value": results["heating"]["total_load"], "unit": "kW"},
{"name": "Heating Load per Area", "value": results["heating"]["load_per_area"], "unit": "W/m²"},
{"name": "Design Heat Loss", "value": results["heating"]["design_heat_loss"], "unit": "kW"},
{"name": "Safety Factor", "value": results["heating"]["safety_factor"], "unit": "%"}
]
for metric in heating_metrics:
st.metric(
label=metric["name"],
value=f"{metric['value']:.2f} {metric['unit']}"
)
# Display heating load pie chart
heating_breakdown = {
"Walls": results["heating"]["component_loads"]["walls"],
"Roof": results["heating"]["component_loads"]["roof"],
"Floor": results["heating"]["component_loads"]["floor"],
"Windows": results["heating"]["component_loads"]["windows"],
"Doors": results["heating"]["component_loads"]["doors"],
"Infiltration": results["heating"]["component_loads"]["infiltration"],
"Ventilation": results["heating"]["component_loads"]["ventilation"]
}
fig = px.pie(
values=list(heating_breakdown.values()),
names=list(heating_breakdown.keys()),
title="Heating Load Breakdown",
color_discrete_sequence=px.colors.qualitative.Pastel
)
fig.update_traces(textposition='inside', textinfo='percent+label')
fig.update_layout(uniformtext_minsize=12, uniformtext_mode='hide')
st.plotly_chart(fig, use_container_width=True)
# Display tabular results
st.subheader("Detailed Results")
# Create tabs for cooling and heating tables
tab1, tab2 = st.tabs(["Cooling Load Details", "Heating Load Details"])
with tab1:
if not results.get("cooling") or "detailed_loads" not in results["cooling"]:
st.warning("Cooling load details are not available.")
else:
# Create cooling load details table
cooling_details = []
# Add envelope components
for wall in results["cooling"]["detailed_loads"]["walls"]:
cooling_details.append({
"Component Type": "Wall",
"Name": wall["name"],
"Orientation": wall["orientation"],
"Area (m²)": wall["area"],
"U-Value (W/m²·K)": wall["u_value"],
"CLTD (°C)": wall["cltd"],
"Load (kW)": wall["load"]
})
for roof in results["cooling"]["detailed_loads"]["roofs"]:
cooling_details.append({
"Component Type": "Roof",
"Name": roof["name"],
"Orientation": roof["orientation"],
"Area (m²)": roof["area"],
"U-Value (W/m²·K)": roof["u_value"],
"CLTD (°C)": roof["cltd"],
"Load (kW)": roof["load"]
})
for window in results["cooling"]["detailed_loads"]["windows"]:
cooling_details.append({
"Component Type": "Window",
"Name": window["name"],
"Orientation": window["orientation"],
"Area (m²)": window["area"],
"U-Value (W/m²·K)": window["u_value"],
"SHGC": window["shgc"],
"SCL (W/m²)": window["scl"],
"Load (kW)": window["load"]
})
for door in results["cooling"]["detailed_loads"]["doors"]:
cooling_details.append({
"Component Type": "Door",
"Name": door["name"],
"Orientation": door["orientation"],
"Area (m²)": door["area"],
"U-Value (W/m²·K)": door["u_value"],
"CLTD (°C)": door["cltd"],
"Load (kW)": door["load"]
})
# Add internal loads
for internal_load in results["cooling"]["detailed_loads"]["internal"]:
cooling_details.append({
"Component Type": internal_load["type"],
"Name": internal_load["name"],
"Quantity": internal_load["quantity"],
"Heat Gain (W)": internal_load["heat_gain"],
"CLF": internal_load["clf"],
"Load (kW)": internal_load["load"]
})
# Add infiltration and ventilation
cooling_details.append({
"Component Type": "Infiltration",
"Name": "Air Infiltration",
"Air Flow (m³/s)": results["cooling"]["detailed_loads"]["infiltration"]["air_flow"],
"Sensible Load (kW)": results["cooling"]["detailed_loads"]["infiltration"]["sensible_load"],
"Latent Load (kW)": results["cooling"]["detailed_loads"]["infiltration"]["latent_load"],
"Load (kW)": results["cooling"]["detailed_loads"]["infiltration"]["total_load"]
})
cooling_details.append({
"Component Type": "Ventilation",
"Name": "Fresh Air",
"Air Flow (m³/s)": results["cooling"]["detailed_loads"]["ventilation"]["air_flow"],
"Sensible Load (kW)": results["cooling"]["detailed_loads"]["ventilation"]["sensible_load"],
"Latent Load (kW)": results["cooling"]["detailed_loads"]["ventilation"]["latent_load"],
"Load (kW)": results["cooling"]["detailed_loads"]["ventilation"]["total_load"]
})
# Display cooling details table
cooling_df = pd.DataFrame(cooling_details)
st.dataframe(cooling_df, use_container_width=True)
with tab2:
if not results.get("heating") or "detailed_loads" not in results["heating"]:
st.warning("Heating load details are not available.")
else:
# Create heating load details table
heating_details = []
# Add envelope components
for wall in results["heating"]["detailed_loads"]["walls"]:
heating_details.append({
"Component Type": "Wall",
"Name": wall["name"],
"Orientation": wall["orientation"],
"Area (m²)": wall["area"],
"U-Value (W/m²·K)": wall["u_value"],
"Temperature Difference (°C)": wall["delta_t"],
"Load (kW)": wall["load"]
})
for roof in results["heating"]["detailed_loads"]["roofs"]:
heating_details.append({
"Component Type": "Roof",
"Name": roof["name"],
"Orientation": roof["orientation"],
"Area (m²)": roof["area"],
"U-Value (W/m²·K)": wall["u_value"],
"Temperature Difference (°C)": roof["delta_t"],
"Load (kW)": roof["load"]
})
for floor in results["heating"]["detailed_loads"]["floors"]:
heating_details.append({
"Component Type": "Floor",
"Name": floor["name"],
"Area (m²)": floor["area"],
"U-Value (W/m²·K)": floor["u_value"],
"Temperature Difference (°C)": floor["delta_t"],
"Load (kW)": floor["load"]
})
for window in results["heating"]["detailed_loads"]["windows"]:
heating_details.append({
"Component Type": "Window",
"Name": window["name"],
"Orientation": window["orientation"],
"Area (m²)": window["area"],
"U-Value (W/m²·K)": window["u_value"],
"Temperature Difference (°C)": window["delta_t"],
"Load (kW)": window["load"]
})
for door in results["heating"]["detailed_loads"]["doors"]:
heating_details.append({
"Component Type": "Door",
"Name": door["name"],
"Orientation": door["orientation"],
"Area (m²)": door["area"],
"U-Value (W/m²·K)": door["u_value"],
"Temperature Difference (°C)": door["delta_t"],
"Load (kW)": door["load"]
})
# Add infiltration and ventilation
heating_details.append({
"Component Type": "Infiltration",
"Name": "Air Infiltration",
"Air Flow (m³/s)": results["heating"]["detailed_loads"]["infiltration"]["air_flow"],
"Temperature Difference (°C)": results["heating"]["detailed_loads"]["infiltration"]["delta_t"],
"Load (kW)": results["heating"]["detailed_loads"]["infiltration"]["load"]
})
heating_details.append({
"Component Type": "Ventilation",
"Name": "Fresh Air",
"Air Flow (m³/s)": results["heating"]["detailed_loads"]["ventilation"]["air_flow"],
"Temperature Difference (°C)": results["heating"]["detailed_loads"]["ventilation"]["delta_t"],
"Load (kW)": results["heating"]["detailed_loads"]["ventilation"]["load"]
})
# Display heating details table
heating_df = pd.DataFrame(heating_details)
st.dataframe(heating_df, use_container_width=True)
# Add download buttons for results
st.subheader("Download Results")
col1, col2 = st.columns(2)
with col1:
if results.get("cooling") and "detailed_loads" in results["cooling"]:
if st.button("Download Cooling Load Results (CSV)"):
cooling_csv = cooling_df.to_csv(index=False)
st.download_button(
label="Download CSV",
data=cooling_csv,
file_name=f"cooling_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv"
)
with col2:
if results.get("heating") and "detailed_loads" in results["heating"]:
if st.button("Download Heating Load Results (CSV)"):
heating_csv = heating_df.to_csv(index=False)
st.download_button(
label="Download CSV",
data=heating_csv,
file_name=f"heating_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv"
)
# Add button to download full report
if st.button("Generate Full Report (Excel)"):
st.info("Excel report generation will be implemented in the Export module.")
def _display_component_breakdown(self, session_state: Dict[str, Any]) -> None:
"""
Display component breakdown visualization.
Args:
session_state: Streamlit session state containing calculation results
"""
st.subheader("Component Breakdown")
if not session_state["calculation_results"].get("cooling") and not session_state["calculation_results"].get("heating"):
st.warning("No component breakdown data available.")
return
# Try to use component visualization module
try:
self.component_visualization.display_component_breakdown(
session_state["calculation_results"],
session_state["components"]
)
except AttributeError:
# Fallback visualization if display_component_breakdown is not available
st.info("Component visualization module not fully implemented. Displaying default breakdown.")
results = session_state["calculation_results"]
# Cooling load bar chart
if results.get("cooling"):
cooling_breakdown = {
"Walls": results["cooling"]["component_loads"]["walls"],
"Roof": results["cooling"]["component_loads"]["roof"],
"Windows": results["cooling"]["component_loads"]["windows"],
"Doors": results["cooling"]["component_loads"]["doors"],
"People": results["cooling"]["component_loads"]["people"],
"Lighting": results["cooling"]["component_loads"]["lighting"],
"Equipment": results["cooling"]["component_loads"]["equipment"],
"Infiltration": results["cooling"]["component_loads"]["infiltration"],
"Ventilation": results["cooling"]["component_loads"]["ventilation"]
}
fig_cooling = px.bar(
x=list(cooling_breakdown.keys()),
y=list(cooling_breakdown.values()),
title="Cooling Load by Component",
labels={"x": "Component", "y": "Load (kW)"},
color_discrete_sequence=px.colors.qualitative.Pastel
)
fig_cooling.update_layout(showlegend=False)
st.plotly_chart(fig_cooling, use_container_width=True)
# Heating load bar chart
if results.get("heating"):
heating_breakdown = {
"Walls": results["heating"]["component_loads"]["walls"],
"Roof": results["heating"]["component_loads"]["roof"],
"Floor": results["heating"]["component_loads"]["floor"],
"Windows": results["heating"]["component_loads"]["windows"],
"Doors": results["heating"]["component_loads"]["doors"],
"Infiltration": results["heating"]["component_loads"]["infiltration"],
"Ventilation": results["heating"]["component_loads"]["ventilation"]
}
fig_heating = px.bar(
x=list(heating_breakdown.keys()),
y=list(heating_breakdown.values()),
title="Heating Load by Component",
labels={"x": "Component", "y": "Load (kW)"},
color_discrete_sequence=px.colors.qualitative.Pastel
)
fig_heating.update_layout(showlegend=False)
st.plotly_chart(fig_heating, use_container_width=True)
def _display_psychrometric_analysis(self, session_state: Dict[str, Any]) -> None:
"""
Display psychrometric analysis visualization.
Args:
session_state: Streamlit session state containing calculation results
"""
st.subheader("Psychrometric Analysis")
if not session_state["calculation_results"].get("cooling"):
st.warning("Psychrometric analysis requires cooling load results.")
return
# Use psychrometric visualization module
self.psychrometric_visualization.display_psychrometric_chart(
session_state["calculation_results"],
session_state["building_info"]
)
def _display_time_analysis(self, session_state: Dict[str, Any]) -> None:
"""
Display time-based analysis visualization.
Args:
session_state: Streamlit session state containing calculation results
"""
st.subheader("Time Analysis")
if not session_state["calculation_results"].get("cooling"):
st.warning("Time analysis requires cooling load results.")
return
# Use time-based visualization module
self.time_based_visualization.display_time_analysis(
session_state["calculation_results"]
)
def _display_scenario_comparison(self, session_state: Dict[str, Any]) -> None:
"""
Display scenario comparison visualization.
Args:
session_state: Streamlit session state containing calculation results
"""
st.subheader("Scenario Comparison")
# Check if there are saved scenarios
if "saved_scenarios" not in session_state or not session_state["saved_scenarios"]:
st.info("No saved scenarios available for comparison. Save the current results as a scenario to enable comparison.")
# Add button to save current results as a scenario
scenario_name = st.text_input("Scenario Name", value="Baseline")
if st.button("Save Current Results as Scenario"):
if "saved_scenarios" not in session_state:
session_state["saved_scenarios"] = {}
# Save current results as a scenario
session_state["saved_scenarios"][scenario_name] = {
"results": session_state["calculation_results"],
"building_info": session_state["building_info"],
"components": session_state["components"],
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
st.success(f"Scenario '{scenario_name}' saved successfully!")
st.rerun()
else:
# Use scenario comparison module
self.scenario_comparison.display_scenario_comparison(
session_state["calculation_results"],
session_state["saved_scenarios"]
)
# Add button to save current results as a new scenario
st.write("### Save Current Results as New Scenario")
scenario_name = st.text_input("Scenario Name", value="Scenario " + str(len(session_state["saved_scenarios"]) + 1))
if st.button("Save Current Results as Scenario"):
# Save current results as a scenario
session_state["saved_scenarios"][scenario_name] = {
"results": session_state["calculation_results"],
"building_info": session_state["building_info"],
"components": session_state["components"],
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
st.success(f"Scenario '{scenario_name}' saved successfully!")
st.rerun()
# Add button to delete a scenario
st.write("### Delete Scenario")
scenario_to_delete = st.selectbox(
"Select Scenario to Delete",
options=list(session_state["saved_scenarios"].keys())
)
if st.button("Delete Selected Scenario"):
# Delete selected scenario
del session_state["saved_scenarios"][scenario_to_delete]
st.success(f"Scenario '{scenario_to_delete}' deleted successfully!")
st.rerun()
# Create a singleton instance
results_display = ResultsDisplay()
# Example usage
if __name__ == "__main__":
import streamlit as st
# Initialize session state with dummy data for testing
if "calculation_results" not in st.session_state:
st.session_state["calculation_results"] = {
"cooling": {
"total_load": 25.5,
"sensible_load": 20.0,
"latent_load": 5.5,
"load_per_area": 85.0,
"component_loads": {
"walls": 5.0,
"roof": 3.0,
"windows": 8.0,
"doors": 1.0,
"people": 2.5,
"lighting": 2.0,
"equipment": 1.5,
"infiltration": 1.0,
"ventilation": 1.5
},
"detailed_loads": {
"walls": [
{"name": "North Wall", "orientation": "NORTH", "area": 20.0, "u_value": 0.5, "cltd": 10.0, "load": 1.0}
],
"roofs": [
{"name": "Main Roof", "orientation": "HORIZONTAL", "area": 100.0, "u_value": 0.3, "cltd": 15.0, "load": 3.0}
],
"windows": [
{"name": "South Window", "orientation": "SOUTH", "area": 10.0, "u_value": 2.8, "shgc": 0.7, "scl": 800.0, "load": 8.0}
],
"doors": [
{"name": "Main Door", "orientation": "NORTH", "area": 2.0, "u_value": 2.0, "cltd": 10.0, "load": 1.0}
],
"internal": [
{"type": "People", "name": "Occupants", "quantity": 10, "heat_gain": 250, "clf": 1.0, "load": 2.5},
{"type": "Lighting", "name": "General Lighting", "quantity": 1000, "heat_gain": 2000, "clf": 1.0, "load": 2.0},
{"type": "Equipment", "name": "Office Equipment", "quantity": 5, "heat_gain": 300, "clf": 1.0, "load": 1.5}
],
"infiltration": {
"air_flow": 0.05,
"sensible_load": 0.8,
"latent_load": 0.2,
"total_load": 1.0
},
"ventilation": {
"air_flow": 0.1,
"sensible_load": 1.0,
"latent_load": 0.5,
"total_load": 1.5
}
}
},
"heating": {
"total_load": 30.0,
"load_per_area": 100.0,
"design_heat_loss": 27.0,
"safety_factor": 10.0,
"component_loads": {
"walls": 8.0,
"roof": 5.0,
"floor": 4.0,
"windows": 7.0,
"doors": 1.0,
"infiltration": 2.0,
"ventilation": 3.0
},
"detailed_loads": {
"walls": [
{"name": "North Wall", "orientation": "NORTH", "area": 20.0, "u_value": 0.5, "delta_t": 25.0, "load": 8.0}
],
"roofs": [
{"name": "Main Roof", "orientation": "HORIZONTAL", "area": 100.0, "u_value": 0.3, "delta_t": 25.0, "load": 5.0}
],
"floors": [
{"name": "Ground Floor", "area": 100.0, "u_value": 0.4, "delta_t": 10.0, "load": 4.0}
],
"windows": [
{"name": "South Window", "orientation": "SOUTH", "area": 10.0, "u_value": 2.8, "delta_t": 25.0, "load": 7.0}
],
"doors": [
{"name": "Main Door", "orientation": "NORTH", "area": 2.0, "u_value": 2.0, "delta_t": 25.0, "load": 1.0}
],
"infiltration": {
"air_flow": 0.05,
"delta_t": 25.0,
"load": 2.0
},
"ventilation": {
"air_flow": 0.1,
"delta_t": 25.0,
"load": 3.0
}
}
}
}
# Display results
results_display.display_results(st.session_state)