HVAC-text-02 / app /data_export.py
mabuseif's picture
Upload 27 files
ca54a52 verified
"""
Data export module for HVAC Load Calculator.
This module provides functionality for exporting calculation results.
"""
import streamlit as st
import pandas as pd
import numpy as np
from typing import Dict, List, Any, Optional, Tuple
import json
import os
import base64
import io
from datetime import datetime
import xlsxwriter
class DataExport:
"""Class for data export functionality."""
@staticmethod
def export_to_csv(data: Dict[str, Any], file_path: str = None) -> Optional[str]:
"""
Export data to CSV format.
Args:
data: Dictionary with data to export
file_path: Optional path to save the CSV file
Returns:
CSV string if file_path is None, otherwise None
"""
try:
# Create DataFrame from data
df = pd.DataFrame(data)
# Convert to CSV
csv_data = df.to_csv(index=False)
# Save to file if path provided
if file_path:
df.to_csv(file_path, index=False)
return None
# Return CSV string if no path provided
return csv_data
except Exception as e:
st.error(f"Error exporting to CSV: {e}")
return None
@staticmethod
def export_to_excel(data_dict: Dict[str, pd.DataFrame], file_path: str = None) -> Optional[bytes]:
"""
Export data to Excel format.
Args:
data_dict: Dictionary with sheet names and DataFrames
file_path: Optional path to save the Excel file
Returns:
Excel bytes if file_path is None, otherwise None
"""
try:
# Create Excel file in memory or on disk
if file_path:
writer = pd.ExcelWriter(file_path, engine='xlsxwriter')
else:
output = io.BytesIO()
writer = pd.ExcelWriter(output, engine='xlsxwriter')
# Write each DataFrame to a different sheet
for sheet_name, df in data_dict.items():
df.to_excel(writer, sheet_name=sheet_name, index=False)
# Auto-adjust column widths
worksheet = writer.sheets[sheet_name]
for i, col in enumerate(df.columns):
max_width = max(
df[col].astype(str).map(len).max(),
len(col)
) + 2
worksheet.set_column(i, i, max_width)
# Save the Excel file
writer.close()
# Return Excel bytes if no path provided
if not file_path:
output.seek(0)
return output.getvalue()
return None
except Exception as e:
st.error(f"Error exporting to Excel: {e}")
return None
@staticmethod
def export_scenario_to_json(scenario: Dict[str, Any], file_path: str = None) -> Optional[str]:
"""
Export scenario data to JSON format.
Args:
scenario: Dictionary with scenario data
file_path: Optional path to save the JSON file
Returns:
JSON string if file_path is None, otherwise None
"""
try:
# Convert to JSON
json_data = json.dumps(scenario, indent=4)
# Save to file if path provided
if file_path:
with open(file_path, "w") as f:
f.write(json_data)
return None
# Return JSON string if no path provided
return json_data
except Exception as e:
st.error(f"Error exporting scenario to JSON: {e}")
return None
@staticmethod
def get_download_link(data: Any, filename: str, text: str, mime_type: str = "text/csv") -> str:
"""
Generate a download link for data.
Args:
data: Data to download
filename: Name of the file to download
text: Text to display for the download link
mime_type: MIME type of the file
Returns:
HTML string with download link
"""
if isinstance(data, str):
b64 = base64.b64encode(data.encode()).decode()
else:
b64 = base64.b64encode(data).decode()
href = f'<a href="data:{mime_type};base64,{b64}" download="{filename}">{text}</a>'
return href
@staticmethod
def create_cooling_load_dataframes(results: Dict[str, Any]) -> Dict[str, pd.DataFrame]:
"""
Create DataFrames for cooling load results.
Args:
results: Dictionary with calculation results
Returns:
Dictionary with DataFrames for Excel export
"""
dataframes = {}
# Create summary DataFrame
summary_data = {
"Metric": [
"Total Cooling Load",
"Sensible Cooling Load",
"Latent Cooling Load",
"Cooling Load per Area"
],
"Value": [
results["cooling"]["total_load"],
results["cooling"]["sensible_load"],
results["cooling"]["latent_load"],
results["cooling"]["load_per_area"]
],
"Unit": [
"kW",
"kW",
"kW",
"W/m²"
]
}
dataframes["Cooling Summary"] = pd.DataFrame(summary_data)
# Create component breakdown DataFrame
component_data = {
"Component": [
"Walls",
"Roof",
"Windows",
"Doors",
"People",
"Lighting",
"Equipment",
"Infiltration",
"Ventilation"
],
"Load (kW)": [
results["cooling"]["component_loads"]["walls"],
results["cooling"]["component_loads"]["roof"],
results["cooling"]["component_loads"]["windows"],
results["cooling"]["component_loads"]["doors"],
results["cooling"]["component_loads"]["people"],
results["cooling"]["component_loads"]["lighting"],
results["cooling"]["component_loads"]["equipment"],
results["cooling"]["component_loads"]["infiltration"],
results["cooling"]["component_loads"]["ventilation"]
],
"Percentage (%)": [
results["cooling"]["component_loads"]["walls"] / results["cooling"]["total_load"] * 100,
results["cooling"]["component_loads"]["roof"] / results["cooling"]["total_load"] * 100,
results["cooling"]["component_loads"]["windows"] / results["cooling"]["total_load"] * 100,
results["cooling"]["component_loads"]["doors"] / results["cooling"]["total_load"] * 100,
results["cooling"]["component_loads"]["people"] / results["cooling"]["total_load"] * 100,
results["cooling"]["component_loads"]["lighting"] / results["cooling"]["total_load"] * 100,
results["cooling"]["component_loads"]["equipment"] / results["cooling"]["total_load"] * 100,
results["cooling"]["component_loads"]["infiltration"] / results["cooling"]["total_load"] * 100,
results["cooling"]["component_loads"]["ventilation"] / results["cooling"]["total_load"] * 100
]
}
dataframes["Cooling Components"] = pd.DataFrame(component_data)
# Create detailed loads DataFrames
# Walls
wall_data = []
for wall in results["cooling"]["detailed_loads"]["walls"]:
wall_data.append({
"Name": wall["name"],
"Orientation": wall["orientation"],
"Area (m²)": wall["area"],
"U-Value (W/m²·K)": wall["u_value"],
"CLTD (°C)": wall["cltd"],
"Load (kW)": wall["load"]
})
if wall_data:
dataframes["Cooling Walls"] = pd.DataFrame(wall_data)
# Roofs
roof_data = []
for roof in results["cooling"]["detailed_loads"]["roofs"]:
roof_data.append({
"Name": roof["name"],
"Orientation": roof["orientation"],
"Area (m²)": roof["area"],
"U-Value (W/m²·K)": roof["u_value"],
"CLTD (°C)": roof["cltd"],
"Load (kW)": roof["load"]
})
if roof_data:
dataframes["Cooling Roofs"] = pd.DataFrame(roof_data)
# Windows
window_data = []
for window in results["cooling"]["detailed_loads"]["windows"]:
window_data.append({
"Name": window["name"],
"Orientation": window["orientation"],
"Area (m²)": window["area"],
"U-Value (W/m²·K)": window["u_value"],
"SHGC": window["shgc"],
"SCL (W/m²)": window["scl"],
"Load (kW)": window["load"]
})
if window_data:
dataframes["Cooling Windows"] = pd.DataFrame(window_data)
# Doors
door_data = []
for door in results["cooling"]["detailed_loads"]["doors"]:
door_data.append({
"Name": door["name"],
"Orientation": door["orientation"],
"Area (m²)": door["area"],
"U-Value (W/m²·K)": door["u_value"],
"CLTD (°C)": door["cltd"],
"Load (kW)": door["load"]
})
if door_data:
dataframes["Cooling Doors"] = pd.DataFrame(door_data)
# Internal loads
internal_data = []
for internal_load in results["cooling"]["detailed_loads"]["internal"]:
internal_data.append({
"Type": internal_load["type"],
"Name": internal_load["name"],
"Quantity": internal_load["quantity"],
"Heat Gain (W)": internal_load["heat_gain"],
"CLF": internal_load["clf"],
"Load (kW)": internal_load["load"]
})
if internal_data:
dataframes["Cooling Internal Loads"] = pd.DataFrame(internal_data)
# Infiltration and ventilation
air_data = [
{
"Type": "Infiltration",
"Air Flow (m³/s)": results["cooling"]["detailed_loads"]["infiltration"]["air_flow"],
"Sensible Load (kW)": results["cooling"]["detailed_loads"]["infiltration"]["sensible_load"],
"Latent Load (kW)": results["cooling"]["detailed_loads"]["infiltration"]["latent_load"],
"Total Load (kW)": results["cooling"]["detailed_loads"]["infiltration"]["total_load"]
},
{
"Type": "Ventilation",
"Air Flow (m³/s)": results["cooling"]["detailed_loads"]["ventilation"]["air_flow"],
"Sensible Load (kW)": results["cooling"]["detailed_loads"]["ventilation"]["sensible_load"],
"Latent Load (kW)": results["cooling"]["detailed_loads"]["ventilation"]["latent_load"],
"Total Load (kW)": results["cooling"]["detailed_loads"]["ventilation"]["total_load"]
}
]
dataframes["Cooling Air Exchange"] = pd.DataFrame(air_data)
return dataframes
@staticmethod
def create_heating_load_dataframes(results: Dict[str, Any]) -> Dict[str, pd.DataFrame]:
"""
Create DataFrames for heating load results.
Args:
results: Dictionary with calculation results
Returns:
Dictionary with DataFrames for Excel export
"""
dataframes = {}
# Create summary DataFrame
summary_data = {
"Metric": [
"Total Heating Load",
"Heating Load per Area",
"Design Heat Loss",
"Safety Factor"
],
"Value": [
results["heating"]["total_load"],
results["heating"]["load_per_area"],
results["heating"]["design_heat_loss"],
results["heating"]["safety_factor"]
],
"Unit": [
"kW",
"W/m²",
"kW",
"%"
]
}
dataframes["Heating Summary"] = pd.DataFrame(summary_data)
# Create component breakdown DataFrame
component_data = {
"Component": [
"Walls",
"Roof",
"Floor",
"Windows",
"Doors",
"Infiltration",
"Ventilation"
],
"Load (kW)": [
results["heating"]["component_loads"]["walls"],
results["heating"]["component_loads"]["roof"],
results["heating"]["component_loads"]["floor"],
results["heating"]["component_loads"]["windows"],
results["heating"]["component_loads"]["doors"],
results["heating"]["component_loads"]["infiltration"],
results["heating"]["component_loads"]["ventilation"]
],
"Percentage (%)": [
results["heating"]["component_loads"]["walls"] / results["heating"]["total_load"] * 100,
results["heating"]["component_loads"]["roof"] / results["heating"]["total_load"] * 100,
results["heating"]["component_loads"]["floor"] / results["heating"]["total_load"] * 100,
results["heating"]["component_loads"]["windows"] / results["heating"]["total_load"] * 100,
results["heating"]["component_loads"]["doors"] / results["heating"]["total_load"] * 100,
results["heating"]["component_loads"]["infiltration"] / results["heating"]["total_load"] * 100,
results["heating"]["component_loads"]["ventilation"] / results["heating"]["total_load"] * 100
]
}
dataframes["Heating Components"] = pd.DataFrame(component_data)
# Create detailed loads DataFrames
# Walls
wall_data = []
for wall in results["heating"]["detailed_loads"]["walls"]:
wall_data.append({
"Name": wall["name"],
"Orientation": wall["orientation"],
"Area (m²)": wall["area"],
"U-Value (W/m²·K)": wall["u_value"],
"Temperature Difference (°C)": wall["delta_t"],
"Load (kW)": wall["load"]
})
if wall_data:
dataframes["Heating Walls"] = pd.DataFrame(wall_data)
# Roofs
roof_data = []
for roof in results["heating"]["detailed_loads"]["roofs"]:
roof_data.append({
"Name": roof["name"],
"Orientation": roof["orientation"],
"Area (m²)": roof["area"],
"U-Value (W/m²·K)": roof["u_value"],
"Temperature Difference (°C)": roof["delta_t"],
"Load (kW)": roof["load"]
})
if roof_data:
dataframes["Heating Roofs"] = pd.DataFrame(roof_data)
# Floors
floor_data = []
for floor in results["heating"]["detailed_loads"]["floors"]:
floor_data.append({
"Name": floor["name"],
"Area (m²)": floor["area"],
"U-Value (W/m²·K)": floor["u_value"],
"Temperature Difference (°C)": floor["delta_t"],
"Load (kW)": floor["load"]
})
if floor_data:
dataframes["Heating Floors"] = pd.DataFrame(floor_data)
# Windows
window_data = []
for window in results["heating"]["detailed_loads"]["windows"]:
window_data.append({
"Name": window["name"],
"Orientation": window["orientation"],
"Area (m²)": window["area"],
"U-Value (W/m²·K)": window["u_value"],
"Temperature Difference (°C)": window["delta_t"],
"Load (kW)": window["load"]
})
if window_data:
dataframes["Heating Windows"] = pd.DataFrame(window_data)
# Doors
door_data = []
for door in results["heating"]["detailed_loads"]["doors"]:
door_data.append({
"Name": door["name"],
"Orientation": door["orientation"],
"Area (m²)": door["area"],
"U-Value (W/m²·K)": door["u_value"],
"Temperature Difference (°C)": door["delta_t"],
"Load (kW)": door["load"]
})
if door_data:
dataframes["Heating Doors"] = pd.DataFrame(door_data)
# Infiltration and ventilation
air_data = [
{
"Type": "Infiltration",
"Air Flow (m³/s)": results["heating"]["detailed_loads"]["infiltration"]["air_flow"],
"Temperature Difference (°C)": results["heating"]["detailed_loads"]["infiltration"]["delta_t"],
"Load (kW)": results["heating"]["detailed_loads"]["infiltration"]["load"]
},
{
"Type": "Ventilation",
"Air Flow (m³/s)": results["heating"]["detailed_loads"]["ventilation"]["air_flow"],
"Temperature Difference (°C)": results["heating"]["detailed_loads"]["ventilation"]["delta_t"],
"Load (kW)": results["heating"]["detailed_loads"]["ventilation"]["load"]
}
]
dataframes["Heating Air Exchange"] = pd.DataFrame(air_data)
return dataframes
@staticmethod
def display_export_interface(session_state: Dict[str, Any]) -> None:
"""
Display export interface in Streamlit.
Args:
session_state: Streamlit session state containing calculation results
"""
st.header("Export Results")
# Check if calculations have been performed
if "calculation_results" not in session_state or not session_state["calculation_results"]:
st.warning("No calculation results available. Please run calculations first.")
return
# Create tabs for different export options
tab1, tab2, tab3 = st.tabs(["CSV Export", "Excel Export", "Scenario Export"])
with tab1:
DataExport._display_csv_export(session_state)
with tab2:
DataExport._display_excel_export(session_state)
with tab3:
DataExport._display_scenario_export(session_state)
@staticmethod
def _display_csv_export(session_state: Dict[str, Any]) -> None:
"""
Display CSV export interface.
Args:
session_state: Streamlit session state containing calculation results
"""
st.subheader("CSV Export")
# Get results
results = session_state["calculation_results"]
# Create tabs for cooling and heating loads
tab1, tab2 = st.tabs(["Cooling Load CSV", "Heating Load CSV"])
with tab1:
# Create cooling load DataFrames
cooling_dfs = DataExport.create_cooling_load_dataframes(results)
# Display and export each DataFrame
for sheet_name, df in cooling_dfs.items():
st.write(f"### {sheet_name}")
st.dataframe(df)
# Add download button
csv_data = DataExport.export_to_csv(df)
if csv_data:
filename = f"{sheet_name.replace(' ', '_').lower()}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
download_link = DataExport.get_download_link(csv_data, filename, f"Download {sheet_name} CSV")
st.markdown(download_link, unsafe_allow_html=True)
with tab2:
# Create heating load DataFrames
heating_dfs = DataExport.create_heating_load_dataframes(results)
# Display and export each DataFrame
for sheet_name, df in heating_dfs.items():
st.write(f"### {sheet_name}")
st.dataframe(df)
# Add download button
csv_data = DataExport.export_to_csv(df)
if csv_data:
filename = f"{sheet_name.replace(' ', '_').lower()}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
download_link = DataExport.get_download_link(csv_data, filename, f"Download {sheet_name} CSV")
st.markdown(download_link, unsafe_allow_html=True)
@staticmethod
def _display_excel_export(session_state: Dict[str, Any]) -> None:
"""
Display Excel export interface.
Args:
session_state: Streamlit session state containing calculation results
"""
st.subheader("Excel Export")
# Get results
results = session_state["calculation_results"]
# Create tabs for cooling, heating, and combined loads
tab1, tab2, tab3 = st.tabs(["Cooling Load Excel", "Heating Load Excel", "Combined Excel"])
with tab1:
# Create cooling load DataFrames
cooling_dfs = DataExport.create_cooling_load_dataframes(results)
# Add download button
excel_data = DataExport.export_to_excel(cooling_dfs)
if excel_data:
filename = f"cooling_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.xlsx"
download_link = DataExport.get_download_link(
excel_data,
filename,
"Download Cooling Load Excel",
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
st.markdown(download_link, unsafe_allow_html=True)
# Display preview
st.write("### Excel Preview")
st.write("The Excel file will contain the following sheets:")
for sheet_name in cooling_dfs.keys():
st.write(f"- {sheet_name}")
with tab2:
# Create heating load DataFrames
heating_dfs = DataExport.create_heating_load_dataframes(results)
# Add download button
excel_data = DataExport.export_to_excel(heating_dfs)
if excel_data:
filename = f"heating_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.xlsx"
download_link = DataExport.get_download_link(
excel_data,
filename,
"Download Heating Load Excel",
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
st.markdown(download_link, unsafe_allow_html=True)
# Display preview
st.write("### Excel Preview")
st.write("The Excel file will contain the following sheets:")
for sheet_name in heating_dfs.keys():
st.write(f"- {sheet_name}")
with tab3:
# Create combined DataFrames
combined_dfs = {}
# Add project information
if "building_info" in session_state:
project_info = [
{"Parameter": "Project Name", "Value": session_state["building_info"].get("project_name", "")},
{"Parameter": "Building Name", "Value": session_state["building_info"].get("building_name", "")},
{"Parameter": "Location", "Value": session_state["building_info"].get("location", "")},
{"Parameter": "Climate Zone", "Value": session_state["building_info"].get("climate_zone", "")},
{"Parameter": "Building Type", "Value": session_state["building_info"].get("building_type", "")},
{"Parameter": "Floor Area", "Value": session_state["building_info"].get("floor_area", "")},
{"Parameter": "Number of Floors", "Value": session_state["building_info"].get("num_floors", "")},
{"Parameter": "Floor Height", "Value": session_state["building_info"].get("floor_height", "")},
{"Parameter": "Orientation", "Value": session_state["building_info"].get("orientation", "")},
{"Parameter": "Occupancy", "Value": session_state["building_info"].get("occupancy", "")},
{"Parameter": "Operating Hours", "Value": session_state["building_info"].get("operating_hours", "")},
{"Parameter": "Date", "Value": datetime.now().strftime("%Y-%m-%d")},
{"Parameter": "Time", "Value": datetime.now().strftime("%H:%M:%S")}
]
combined_dfs["Project Information"] = pd.DataFrame(project_info)
# Add cooling load DataFrames
cooling_dfs = DataExport.create_cooling_load_dataframes(results)
for sheet_name, df in cooling_dfs.items():
combined_dfs[sheet_name] = df
# Add heating load DataFrames
heating_dfs = DataExport.create_heating_load_dataframes(results)
for sheet_name, df in heating_dfs.items():
combined_dfs[sheet_name] = df
# Add download button
excel_data = DataExport.export_to_excel(combined_dfs)
if excel_data:
filename = f"hvac_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.xlsx"
download_link = DataExport.get_download_link(
excel_data,
filename,
"Download Combined Excel Report",
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
st.markdown(download_link, unsafe_allow_html=True)
# Display preview
st.write("### Excel Preview")
st.write("The Excel file will contain the following sheets:")
for sheet_name in combined_dfs.keys():
st.write(f"- {sheet_name}")
@staticmethod
def _display_scenario_export(session_state: Dict[str, Any]) -> None:
"""
Display scenario export interface.
Args:
session_state: Streamlit session state containing calculation results
"""
st.subheader("Scenario Export")
# Check if there are saved scenarios
if "saved_scenarios" not in session_state or not session_state["saved_scenarios"]:
st.info("No saved scenarios available for export. Save the current results as a scenario to enable export.")
# Add button to save current results as a scenario
scenario_name = st.text_input("Scenario Name", value="Baseline")
if st.button("Save Current Results as Scenario"):
if "saved_scenarios" not in session_state:
session_state["saved_scenarios"] = {}
# Save current results as a scenario
session_state["saved_scenarios"][scenario_name] = {
"results": session_state["calculation_results"],
"building_info": session_state["building_info"],
"components": session_state["components"],
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
st.success(f"Scenario '{scenario_name}' saved successfully!")
st.experimental_rerun()
else:
# Display saved scenarios
st.write("### Saved Scenarios")
# Create selectbox for scenarios
scenario_names = list(session_state["saved_scenarios"].keys())
selected_scenario = st.selectbox("Select Scenario to Export", scenario_names)
if selected_scenario:
# Get selected scenario
scenario = session_state["saved_scenarios"][selected_scenario]
# Display scenario information
st.write(f"**Scenario:** {selected_scenario}")
st.write(f"**Timestamp:** {scenario['timestamp']}")
# Add download button
json_data = DataExport.export_scenario_to_json(scenario)
if json_data:
filename = f"{selected_scenario.replace(' ', '_').lower()}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
download_link = DataExport.get_download_link(
json_data,
filename,
"Download Scenario JSON",
"application/json"
)
st.markdown(download_link, unsafe_allow_html=True)
# Add button to export all scenarios
if st.button("Export All Scenarios"):
# Create a zip file in memory
import zipfile
from io import BytesIO
zip_buffer = BytesIO()
with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zip_file:
for scenario_name, scenario in session_state["saved_scenarios"].items():
# Export scenario to JSON
json_data = DataExport.export_scenario_to_json(scenario)
if json_data:
filename = f"{scenario_name.replace(' ', '_').lower()}.json"
zip_file.writestr(filename, json_data)
# Add download button for zip file
zip_buffer.seek(0)
zip_data = zip_buffer.getvalue()
filename = f"all_scenarios_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
download_link = DataExport.get_download_link(
zip_data,
filename,
"Download All Scenarios (ZIP)",
"application/zip"
)
st.markdown(download_link, unsafe_allow_html=True)
# Create a singleton instance
data_export = DataExport()
# Example usage
if __name__ == "__main__":
import streamlit as st
# Initialize session state with dummy data for testing
if "calculation_results" not in st.session_state:
st.session_state["calculation_results"] = {
"cooling": {
"total_load": 25.5,
"sensible_load": 20.0,
"latent_load": 5.5,
"load_per_area": 85.0,
"component_loads": {
"walls": 5.0,
"roof": 3.0,
"windows": 8.0,
"doors": 1.0,
"people": 2.5,
"lighting": 2.0,
"equipment": 1.5,
"infiltration": 1.0,
"ventilation": 1.5
},
"detailed_loads": {
"walls": [
{"name": "North Wall", "orientation": "NORTH", "area": 20.0, "u_value": 0.5, "cltd": 10.0, "load": 1.0}
],
"roofs": [
{"name": "Main Roof", "orientation": "HORIZONTAL", "area": 100.0, "u_value": 0.3, "cltd": 15.0, "load": 3.0}
],
"windows": [
{"name": "South Window", "orientation": "SOUTH", "area": 10.0, "u_value": 2.8, "shgc": 0.7, "scl": 800.0, "load": 8.0}
],
"doors": [
{"name": "Main Door", "orientation": "NORTH", "area": 2.0, "u_value": 2.0, "cltd": 10.0, "load": 1.0}
],
"internal": [
{"type": "People", "name": "Occupants", "quantity": 10, "heat_gain": 250, "clf": 1.0, "load": 2.5},
{"type": "Lighting", "name": "General Lighting", "quantity": 1000, "heat_gain": 2000, "clf": 1.0, "load": 2.0},
{"type": "Equipment", "name": "Office Equipment", "quantity": 5, "heat_gain": 300, "clf": 1.0, "load": 1.5}
],
"infiltration": {
"air_flow": 0.05,
"sensible_load": 0.8,
"latent_load": 0.2,
"total_load": 1.0
},
"ventilation": {
"air_flow": 0.1,
"sensible_load": 1.0,
"latent_load": 0.5,
"total_load": 1.5
}
}
},
"heating": {
"total_load": 30.0,
"load_per_area": 100.0,
"design_heat_loss": 27.0,
"safety_factor": 10.0,
"component_loads": {
"walls": 8.0,
"roof": 5.0,
"floor": 4.0,
"windows": 7.0,
"doors": 1.0,
"infiltration": 2.0,
"ventilation": 3.0
},
"detailed_loads": {
"walls": [
{"name": "North Wall", "orientation": "NORTH", "area": 20.0, "u_value": 0.5, "delta_t": 25.0, "load": 8.0}
],
"roofs": [
{"name": "Main Roof", "orientation": "HORIZONTAL", "area": 100.0, "u_value": 0.3, "delta_t": 25.0, "load": 5.0}
],
"floors": [
{"name": "Ground Floor", "area": 100.0, "u_value": 0.4, "delta_t": 10.0, "load": 4.0}
],
"windows": [
{"name": "South Window", "orientation": "SOUTH", "area": 10.0, "u_value": 2.8, "delta_t": 25.0, "load": 7.0}
],
"doors": [
{"name": "Main Door", "orientation": "NORTH", "area": 2.0, "u_value": 2.0, "delta_t": 25.0, "load": 1.0}
],
"infiltration": {
"air_flow": 0.05,
"delta_t": 25.0,
"load": 2.0
},
"ventilation": {
"air_flow": 0.1,
"delta_t": 25.0,
"load": 3.0
}
}
}
}
# Display export interface
data_export.display_export_interface(st.session_state)