Spaces:
Sleeping
Sleeping
# --- | |
# jupyter: | |
# jupytext: | |
# text_representation: | |
# extension: .py | |
# format_name: light | |
# format_version: '1.5' | |
# jupytext_version: 1.14.2 | |
# kernelspec: | |
# display_name: Python [conda env:bbytes] * | |
# language: python | |
# name: conda-env-bbytes-py | |
# --- | |
# + | |
import csv | |
import pandas as pd | |
from datetime import datetime, timedelta | |
import numpy as np | |
import datetime as dt | |
import matplotlib.pyplot as plt | |
from pathlib import Path | |
import time | |
import plotly.graph_objects as go | |
import plotly.io as pio | |
from PIL import Image | |
import streamlit as st | |
import plotly.express as px | |
import altair as alt | |
import dateutil.parser | |
from matplotlib.colors import LinearSegmentedColormap | |
# + | |
class color: | |
PURPLE = '\033[95m' | |
CYAN = '\033[96m' | |
DARKCYAN = '\033[36m' | |
BLUE = '\033[94m' | |
GREEN = '\033[92m' | |
YELLOW = '\033[93m' | |
RED = '\033[91m' | |
BOLD = '\033[1m' | |
UNDERLINE = '\033[4m' | |
END = '\033[0m' | |
def print_PL(amnt, thresh, extras = "" ): | |
if amnt > 0: | |
return color.BOLD + color.GREEN + str(amnt) + extras + color.END | |
elif amnt < 0: | |
return color.BOLD + color.RED + str(amnt)+ extras + color.END | |
elif np.isnan(amnt): | |
return str(np.nan) | |
else: | |
return str(amnt + extras) | |
def get_headers(logtype): | |
otimeheader = "" | |
cheader = "" | |
plheader = "" | |
fmat = '%Y-%m-%d %H:%M:%S' | |
if logtype == "ByBit": | |
otimeheader = 'Create Time' | |
cheader = 'Contracts' | |
plheader = 'Closed P&L' | |
fmat = '%Y-%m-%d %H:%M:%S' | |
if logtype == "BitGet": | |
otimeheader = 'Date' | |
cheader = 'Futures' | |
plheader = 'Realized P/L' | |
fmat = '%Y-%m-%d %H:%M:%S' | |
if logtype == "MEXC": | |
otimeheader = 'Trade time' | |
cheader = 'Futures' | |
plheader = 'closing position' | |
fmat = '%Y/%m/%d %H:%M' | |
if logtype == "Binance": | |
otimeheader = 'Date' | |
cheader = 'Symbol' | |
plheader = 'Realized Profit' | |
fmat = '%Y-%m-%d %H:%M:%S' | |
#if logtype == "Kucoin": | |
# otimeheader = 'Time' | |
# cheader = 'Contract' | |
# plheader = '' | |
# fmat = '%Y/%m/%d %H:%M:%S' | |
if logtype == "Kraken": | |
otimeheader = 'time' | |
cheader = 'asset' | |
plheader = 'amount' | |
fmat = '%Y-%m-%d %H:%M:%S.%f' | |
if logtype == "OkX": | |
otimeheader = '\ufeffOrder Time' | |
cheader = '\ufeffInstrument' | |
plheader = '\ufeffPL' | |
fmat = '%Y-%m-%d %H:%M:%S' | |
return otimeheader.lower(), cheader.lower(), plheader.lower(), fmat | |
def get_coin_info(df_coin, principal_balance,plheader): | |
numtrades = int(len(df_coin)) | |
numwin = int(sum(df_coin[plheader] > 0)) | |
numloss = int(sum(df_coin[plheader] < 0)) | |
winrate = np.round(100*numwin/numtrades,2) | |
grosswin = sum(df_coin[df_coin[plheader] > 0][plheader]) | |
grossloss = sum(df_coin[df_coin[plheader] < 0][plheader]) | |
if grossloss != 0: | |
pfactor = -1*np.round(grosswin/grossloss,2) | |
else: | |
pfactor = np.nan | |
cum_PL = np.round(sum(df_coin[plheader].values),2) | |
cum_PL_perc = np.round(100*cum_PL/principal_balance,2) | |
mean_PL = np.round(sum(df_coin[plheader].values/len(df_coin)),2) | |
mean_PL_perc = np.round(100*mean_PL/principal_balance,2) | |
return numtrades, numwin, numloss, winrate, pfactor, cum_PL, cum_PL_perc, mean_PL, mean_PL_perc | |
def get_hist_info(df_coin, principal_balance,plheader): | |
numtrades = int(len(df_coin)) | |
numwin = int(sum(df_coin[plheader] > 0)) | |
numloss = int(sum(df_coin[plheader] < 0)) | |
if numtrades != 0: | |
winrate = int(np.round(100*numwin/numtrades,2)) | |
else: | |
winrate = np.nan | |
grosswin = sum(df_coin[df_coin[plheader] > 0][plheader]) | |
grossloss = sum(df_coin[df_coin[plheader] < 0][plheader]) | |
if grossloss != 0: | |
pfactor = -1*np.round(grosswin/grossloss,2) | |
else: | |
pfactor = np.nan | |
return numtrades, numwin, numloss, winrate, pfactor | |
def get_rolling_stats(df, lev, otimeheader, days): | |
max_roll = (df[otimeheader].max() - df[otimeheader].min()).days | |
if max_roll >= days: | |
rollend = df[otimeheader].max()-timedelta(days=days) | |
rolling_df = df[df[otimeheader] >= rollend] | |
if len(rolling_df) > 0: | |
rolling_perc = rolling_df['Return Per Trade'].dropna().cumprod().values[-1]-1 | |
else: | |
rolling_perc = np.nan | |
else: | |
rolling_perc = np.nan | |
return 100*rolling_perc | |
def cc_coding(row): | |
return ['background-color: lightgrey'] * len(row) if row['Exit Date'] <= datetime.strptime('2022-12-16 00:00:00','%Y-%m-%d %H:%M:%S').date() else [''] * len(row) | |
def ctt_coding(row): | |
return ['background-color: lightgrey'] * len(row) if row['Exit Date'] <= datetime.strptime('2023-01-02 00:00:00','%Y-%m-%d %H:%M:%S').date() else [''] * len(row) | |
def my_style(v, props=''): | |
props = 'color:red' if v < 0 else 'color:green' | |
return props | |
def filt_df(df, cheader, symbol_selections): | |
df = df.copy() | |
df = df[df[cheader].isin(symbol_selections)] | |
return df | |
def tv_reformat(close50filename): | |
try: | |
data = pd.read_csv(open('CT-Trade-Log-50.csv','r'), sep='[,|\t]', engine='python') | |
except: | |
data = pd.DataFrame([]) | |
if data.empty: | |
return data | |
else: | |
entry_df = data[data['Type'] == "Entry Long"] | |
exit_df = data[data['Type']=="Exit Long"] | |
entry_df.index = range(len(entry_df)) | |
exit_df.index = range(len(exit_df)) | |
df = pd.DataFrame([], columns=['Trade','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %', 'Drawdown %']) | |
df['Trade'] = entry_df.index | |
df['Entry Date'] = entry_df['Date/Time'] | |
df['Buy Price'] = entry_df['Price USDT'] | |
df['Sell Price'] = exit_df['Price USDT'] | |
df['Exit Date'] = exit_df['Date/Time'] | |
df['P/L per token'] = df['Sell Price'] - df['Buy Price'] | |
df['P/L %'] = exit_df['Profit %'] | |
df['Drawdown %'] = exit_df['Drawdown %'] | |
df['Close 50'] = [int(i == "Close 50% of Position") for i in exit_df['Signal']] | |
df.loc[df['Close 50'] == 1, 'Exit Date'] = np.copy(df.loc[df[df['Close 50'] == 1].index.values -1]['Exit Date']) | |
grouped_df = df.groupby('Entry Date').agg({'Entry Date': 'min', 'Buy Price':'mean', | |
'Sell Price' : 'mean', | |
'Exit Date': 'max', | |
'P/L per token': 'mean', | |
'P/L %' : 'mean'}) | |
grouped_df.insert(0,'Trade', range(len(grouped_df))) | |
grouped_df.index = range(len(grouped_df)) | |
return grouped_df | |
def load_data(filename, otimeheader, fmat): | |
df = pd.read_csv(open(filename,'r'), sep='\t') # so as not to mutate cached value | |
close50filename = filename.split('.')[0] + '-50.' + filename.split('.')[1] | |
df2 = tv_reformat(close50filename) | |
if filename == "CT-Trade-Log.csv": | |
df.columns = ['Trade','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %', 'Drawdown %'] | |
df.insert(1, 'Signal', ['Long']*len(df)) | |
elif filename == "CC-Trade-Log.csv": | |
df.columns = ['Trade','Signal','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %', 'Drawdown %'] | |
else: | |
df.columns = ['Trade','Signal','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %'] | |
if filename != "CT-Toasted-Trade-Log.csv": | |
df['Signal'] = df['Signal'].str.replace(' ', '', regex=True) | |
df['Buy Price'] = df['Buy Price'].str.replace('$', '', regex=True) | |
df['Sell Price'] = df['Sell Price'].str.replace('$', '', regex=True) | |
df['Buy Price'] = df['Buy Price'].str.replace(',', '', regex=True) | |
df['Sell Price'] = df['Sell Price'].str.replace(',', '', regex=True) | |
df['P/L per token'] = df['P/L per token'].str.replace('$', '', regex=True) | |
df['P/L per token'] = df['P/L per token'].str.replace(',', '', regex=True) | |
df['P/L %'] = df['P/L %'].str.replace('%', '', regex=True) | |
df['Buy Price'] = pd.to_numeric(df['Buy Price']) | |
df['Sell Price'] = pd.to_numeric(df['Sell Price']) | |
df['P/L per token'] = pd.to_numeric(df['P/L per token']) | |
df['P/L %'] = pd.to_numeric(df['P/L %']) | |
if df2.empty: | |
df = df | |
else: | |
df = pd.concat([df,df2], axis=0, ignore_index=True) | |
if filename == "CT-Trade-Log.csv": | |
df['Signal'] = ['Long']*len(df) | |
dateheader = 'Date' | |
theader = 'Time' | |
df[dateheader] = [tradetimes.split(" ")[0] for tradetimes in df[otimeheader].values] | |
df[theader] = [tradetimes.split(" ")[1] for tradetimes in df[otimeheader].values] | |
df[otimeheader]= [dateutil.parser.parse(date+' '+time) | |
for date,time in zip(df[dateheader],df[theader])] | |
df[otimeheader] = pd.to_datetime(df[otimeheader]) | |
df['Exit Date'] = pd.to_datetime(df['Exit Date']) | |
df.sort_values(by=otimeheader, inplace=True) | |
df[dateheader] = [dateutil.parser.parse(date).date() for date in df[dateheader]] | |
df[theader] = [dateutil.parser.parse(time).time() for time in df[theader]] | |
df['Trade'] = df.index + 1 #reindex | |
if filename == "CT-Trade-Log.csv": | |
df['DCA'] = np.nan | |
for exit in pd.unique(df['Exit Date']): | |
df_exit = df[df['Exit Date']==exit] | |
if dateutil.parser.parse(str(exit)) < dateutil.parser.parse('2023-02-07 13:00:00'): | |
for i in range(len(df_exit)): | |
ind = df_exit.index[i] | |
df.loc[ind,'DCA'] = i+1 | |
else: | |
for i in range(len(df_exit)): | |
ind = df_exit.index[i] | |
df.loc[ind,'DCA'] = i+1.1 | |
return df | |
def get_sd_df(sd_df, sd, bot_selections, dca1, dca2, dca3, dca4, dca5, dca6, fees, lev, dollar_cap, principal_balance): | |
sd = 2*.00026 | |
# ------ Standard Dev. Calculations. | |
if bot_selections == "Cinnamon Toast": | |
dca_map = {1: dca1/100, 2: dca2/100, 3: dca3/100, 4: dca4/100, 1.1: dca5/100, 2.1: dca6/100} | |
sd_df['DCA %'] = sd_df['DCA'].map(dca_map) | |
sd_df['Calculated Return % (+)'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']*(1+df['Signal'].map(signal_map)*sd) - df['Buy Price']*(1-df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1-df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade | |
sd_df['Calculated Return % (-)'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']*(1-df['Signal'].map(signal_map)*sd)-df['Buy Price']*(1+df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1+df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade | |
sd_df['DCA'] = np.floor(sd_df['DCA'].values) | |
sd_df['Return Per Trade (+)'] = np.nan | |
sd_df['Return Per Trade (-)'] = np.nan | |
sd_df['Balance used in Trade (+)'] = np.nan | |
sd_df['Balance used in Trade (-)'] = np.nan | |
sd_df['New Balance (+)'] = np.nan | |
sd_df['New Balance (-)'] = np.nan | |
g1 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (+)'].reset_index(name='Return Per Trade (+)') | |
g2 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (-)'].reset_index(name='Return Per Trade (-)') | |
sd_df.loc[sd_df['DCA']==1.0,'Return Per Trade (+)'] = 1+lev*g1['Return Per Trade (+)'].values | |
sd_df.loc[sd_df['DCA']==1.0,'Return Per Trade (-)'] = 1+lev*g2['Return Per Trade (-)'].values | |
sd_df['Compounded Return (+)'] = sd_df['Return Per Trade (+)'].cumprod() | |
sd_df['Compounded Return (-)'] = sd_df['Return Per Trade (-)'].cumprod() | |
sd_df.loc[sd_df['DCA']==1.0,'New Balance (+)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df.loc[sd_df['DCA']==1.0,'Compounded Return (+)']] | |
sd_df.loc[sd_df['DCA']==1.0,'Balance used in Trade (+)'] = np.concatenate([[principal_balance], sd_df.loc[sd_df['DCA']==1.0,'New Balance (+)'].values[:-1]]) | |
sd_df.loc[sd_df['DCA']==1.0,'New Balance (-)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df.loc[sd_df['DCA']==1.0,'Compounded Return (-)']] | |
sd_df.loc[sd_df['DCA']==1.0,'Balance used in Trade (-)'] = np.concatenate([[principal_balance], sd_df.loc[sd_df['DCA']==1.0,'New Balance (-)'].values[:-1]]) | |
else: | |
sd_df['Calculated Return % (+)'] = df['Signal'].map(signal_map)*(1-fees)*((df['Sell Price']*(1+df['Signal'].map(signal_map)*sd) - df['Buy Price']*(1-df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1-df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade | |
sd_df['Calculated Return % (-)'] = df['Signal'].map(signal_map)*(1-fees)*((df['Sell Price']*(1-df['Signal'].map(signal_map)*sd)-df['Buy Price']*(1+df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1+df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade | |
sd_df['Return Per Trade (+)'] = np.nan | |
sd_df['Return Per Trade (-)'] = np.nan | |
g1 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (+)'].reset_index(name='Return Per Trade (+)') | |
g2 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (-)'].reset_index(name='Return Per Trade (-)') | |
sd_df['Return Per Trade (+)'] = 1+lev*g1['Return Per Trade (+)'].values | |
sd_df['Return Per Trade (-)'] = 1+lev*g2['Return Per Trade (-)'].values | |
sd_df['Compounded Return (+)'] = sd_df['Return Per Trade (+)'].cumprod() | |
sd_df['Compounded Return (-)'] = sd_df['Return Per Trade (-)'].cumprod() | |
sd_df['New Balance (+)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df['Compounded Return (+)']] | |
sd_df['Balance used in Trade (+)'] = np.concatenate([[principal_balance], sd_df['New Balance (+)'].values[:-1]]) | |
sd_df['New Balance (-)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df['Compounded Return (-)']] | |
sd_df['Balance used in Trade (-)'] = np.concatenate([[principal_balance], sd_df['New Balance (-)'].values[:-1]]) | |
sd_df['Net P/L Per Trade (+)'] = (sd_df['Return Per Trade (+)']-1)*sd_df['Balance used in Trade (+)'] | |
sd_df['Cumulative P/L (+)'] = sd_df['Net P/L Per Trade (+)'].cumsum() | |
sd_df['Net P/L Per Trade (-)'] = (sd_df['Return Per Trade (-)']-1)*sd_df['Balance used in Trade (-)'] | |
sd_df['Cumulative P/L (-)'] = sd_df['Net P/L Per Trade (-)'].cumsum() | |
return sd_df | |
def runapp() -> None: | |
bot_selections = "Cinnamon Toast" | |
otimeheader = 'Exit Date' | |
fmat = '%Y-%m-%d %H:%M:%S' | |
fees = .075/100 | |
st.header(f"{bot_selections} Performance Dashboard :bread: :moneybag:") | |
no_errors = True | |
st.write("Welcome to the Trading Bot Dashboard by BreadBytes! You can use this dashboard to track " + | |
"the performance of our trading bots.") | |
if bot_selections == "Cinnamon Toast": | |
lev_cap = 5 | |
dollar_cap = 1000000000.00 | |
data = load_data("CT-Trade-Log.csv",otimeheader, fmat) | |
if bot_selections == "French Toast": | |
lev_cap = 3 | |
dollar_cap = 10000000000.00 | |
data = load_data("FT-Trade-Log.csv",otimeheader, fmat) | |
if bot_selections == "Short Bread": | |
lev_cap = 5 | |
dollar_cap = 100000.00 | |
data = load_data("SB-Trade-Log.csv",otimeheader, fmat) | |
if bot_selections == "Cosmic Cupcake": | |
lev_cap = 3 | |
dollar_cap = 100000.00 | |
data = load_data("CC-Trade-Log.csv",otimeheader, fmat) | |
if bot_selections == "CT Toasted": | |
lev_cap = 5 | |
dollar_cap = 100000.00 | |
data = load_data("CT-Toasted-Trade-Log.csv",otimeheader, fmat) | |
df = data.copy(deep=True) | |
dateheader = 'Date' | |
theader = 'Time' | |
st.subheader("Choose your settings:") | |
with st.form("user input", ): | |
if no_errors: | |
with st.container(): | |
col1, col2 = st.columns(2) | |
with col1: | |
try: | |
startdate = st.date_input("Start Date", value=pd.to_datetime(df[otimeheader]).min()) | |
except: | |
st.error("Please select your exchange or upload a supported trade log file.") | |
no_errors = False | |
with col2: | |
try: | |
enddate = st.date_input("End Date", value=datetime.today()) | |
except: | |
st.error("Please select your exchange or upload a supported trade log file.") | |
no_errors = False | |
#st.sidebar.subheader("Customize your Dashboard") | |
if no_errors and (enddate < startdate): | |
st.error("End Date must be later than Start date. Please try again.") | |
no_errors = False | |
with st.container(): | |
col1,col2 = st.columns(2) | |
with col2: | |
lev = st.number_input('Leverage', min_value=1, value=1, max_value= lev_cap, step=1) | |
with col1: | |
principal_balance = st.number_input('Starting Balance', min_value=0.00, value=1000.00, max_value= dollar_cap, step=.01) | |
if bot_selections == "Cinnamon Toast": | |
st.write("Choose your DCA setup (for trades before 02/07/2023)") | |
with st.container(): | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
dca1 = st.number_input('DCA 1 Allocation', min_value=0, value=25, max_value= 100, step=1) | |
with col2: | |
dca2 = st.number_input('DCA 2 Allocation', min_value=0, value=25, max_value= 100, step=1) | |
with col3: | |
dca3 = st.number_input('DCA 3 Allocation', min_value=0, value=25, max_value= 100, step=1) | |
with col4: | |
dca4 = st.number_input('DCA 4 Allocation', min_value=0, value=25, max_value= 100, step=1) | |
st.write("Choose your DCA setup (for trades on or after 02/07/2023)") | |
with st.container(): | |
col1, col2 = st.columns(2) | |
with col1: | |
dca5 = st.number_input('DCA 1 Allocation', min_value=0, value=50, max_value= 100, step=1) | |
with col2: | |
dca6 = st.number_input('DCA 2 Allocation', min_value=0, value=50, max_value= 100, step=1) | |
#hack way to get button centered | |
c = st.columns(9) | |
with c[4]: | |
submitted = st.form_submit_button("Get Cookin'!") | |
if submitted and principal_balance * lev > dollar_cap: | |
lev = np.floor(dollar_cap/principal_balance) | |
st.error(f"WARNING: (Starting Balance)*(Leverage) exceeds the ${dollar_cap} limit. Using maximum available leverage of {lev}") | |
if submitted and no_errors: | |
df = df[(df[dateheader] >= startdate) & (df[dateheader] <= enddate)] | |
signal_map = {'Long': 1, 'Short':-1} | |
if len(df) == 0: | |
st.error("There are no available trades matching your selections. Please try again!") | |
no_errors = False | |
if no_errors: | |
if bot_selections == "Cinnamon Toast": | |
dca_map = {1: dca1/100, 2: dca2/100, 3: dca3/100, 4: dca4/100, 1.1: dca5/100, 2.1: dca6/100} | |
df['DCA %'] = df['DCA'].map(dca_map) | |
df['Calculated Return %'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade | |
df['DCA'] = np.floor(df['DCA'].values) | |
df['Return Per Trade'] = np.nan | |
df['Balance used in Trade'] = np.nan | |
df['New Balance'] = np.nan | |
g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade') | |
df.loc[df['DCA']==1.0,'Return Per Trade'] = 1+lev*g['Return Per Trade'].values | |
df['Compounded Return'] = df['Return Per Trade'].cumprod() | |
df.loc[df['DCA']==1.0,'New Balance'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df.loc[df['DCA']==1.0,'Compounded Return']] | |
df.loc[df['DCA']==1.0,'Balance used in Trade'] = np.concatenate([[principal_balance], df.loc[df['DCA']==1.0,'New Balance'].values[:-1]]) | |
else: | |
df['Calculated Return %'] = df['Signal'].map(signal_map)*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade | |
df['Return Per Trade'] = np.nan | |
g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade') | |
df['Return Per Trade'] = 1+lev*g['Return Per Trade'].values | |
df['Compounded Return'] = df['Return Per Trade'].cumprod() | |
df['New Balance'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df['Compounded Return']] | |
df['Balance used in Trade'] = np.concatenate([[principal_balance], df['New Balance'].values[:-1]]) | |
df['Net P/L Per Trade'] = (df['Return Per Trade']-1)*df['Balance used in Trade'] | |
df['Cumulative P/L'] = df['Net P/L Per Trade'].cumsum() | |
if bot_selections == "Cinnamon Toast" or bot_selections == "Cosmic Cupcake": | |
cum_pl = df.loc[df.drop('Drawdown %', axis=1).dropna().index[-1],'Cumulative P/L'] + principal_balance | |
#cum_sdp = sd_df.loc[sd_df.drop('Drawdown %', axis=1).dropna().index[-1],'Cumulative P/L (+)'] + principal_balance | |
#cum_sdm = sd_df.loc[sd_df.drop('Drawdown %', axis=1).dropna().index[-1],'Cumulative P/L (-)'] + principal_balance | |
else: | |
cum_pl = df.loc[df.dropna().index[-1],'Cumulative P/L'] + principal_balance | |
#cum_sdp = sd_df.loc[sd_df.dropna().index[-1],'Cumulative P/L (+)'] + principal_balance | |
#cum_sdm = sd_df.loc[sd_df.dropna().index[-1],'Cumulative P/L (-)'] + principal_balance | |
#sd = 2*.00026 | |
#sd_df = get_sd_df(get_sd_df(df.copy(), sd, bot_selections, dca1, dca2, dca3, dca4, dca5, dca6, fees, lev, dollar_cap, principal_balance) | |
effective_return = 100*((cum_pl - principal_balance)/principal_balance) | |
st.header(f"{bot_selections} Results") | |
with st.container(): | |
if len(bot_selections) > 1: | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric( | |
"Total Account Balance", | |
f"${cum_pl:.2f}", | |
f"{100*(cum_pl-principal_balance)/(principal_balance):.2f} %", | |
) | |
# with col2: | |
# st.write("95% of trades should fall within this 2 std. dev. range.") | |
# st.metric( | |
# "High Range (+ 2 std. dev.)", | |
# f"", #${cum_sdp:.2f} | |
# f"{100*(cum_sdp-principal_balance)/(principal_balance):.2f} %", | |
# ) | |
# st.metric( | |
# "Low Range (- 2 std. dev.)", | |
# f"" ,#${cum_sdm:.2f}" | |
# f"{100*(cum_sdm-principal_balance)/(principal_balance):.2f} %", | |
# ) | |
if bot_selections == "Cinnamon Toast" or bot_selections == "Cosmic Cupcake": | |
#st.line_chart(data=df.drop('Drawdown %', axis=1).dropna(), x='Exit Date', y='Cumulative P/L', use_container_width=True) | |
dfdata = df.drop('Drawdown %', axis=1).dropna() | |
#sd_df = sd_df.drop('Drawdown %', axis=1).dropna() | |
else: | |
#st.line_chart(data=df.dropna(), x='Exit Date', y='Cumulative P/L', use_container_width=True) | |
dfdata = df.dropna() | |
#sd_df = sd_df.dropna() | |
# Create figure | |
fig = go.Figure() | |
pyLogo = Image.open("logo.png") | |
# fig.add_traces(go.Scatter(x=sd_df['Exit Date'], y = sd_df['Cumulative P/L (+)'],line_shape='spline', | |
# line = dict(smoothing = 1.3, color='rgba(31, 119, 200,0)'), showlegend = False) | |
# ) | |
# fig.add_traces(go.Scatter(x=sd_df['Exit Date'], y = sd_df['Cumulative P/L (-)'], | |
# line = dict(smoothing = 1.3, color='rgba(31, 119, 200,0)'), line_shape='spline', | |
# fill='tonexty', | |
# fillcolor = 'rgba(31, 119, 200,.2)', name = '+/- Standard Deviation') | |
# ) | |
# Add trace | |
fig.add_trace( | |
go.Scatter(x=dfdata['Exit Date'], y=np.round(dfdata['Cumulative P/L'].values,2), line_shape='spline', | |
line = {'smoothing': 1.0, 'color' : 'rgba(31, 119, 200,.8)'}, | |
name='Cumulative P/L') | |
) | |
buyhold = (principal_balance/dfdata['Buy Price'][dfdata.index[0]])*(dfdata['Buy Price']-dfdata['Buy Price'][dfdata.index[0]]) | |
fig.add_trace(go.Scatter(x=dfdata['Exit Date'], y=np.round(buyhold.values,2), line_shape='spline', | |
line = {'smoothing': 1.0, 'color' :'red'}, name = 'Buy & Hold Return') | |
) | |
fig.add_layout_image( | |
dict( | |
source=pyLogo, | |
xref="paper", | |
yref="paper", | |
x = 0.05, #dfdata['Exit Date'].astype('int64').min() // 10**9, | |
y = .85, #dfdata['Cumulative P/L'].max(), | |
sizex= .9, #(dfdata['Exit Date'].astype('int64').max() - dfdata['Exit Date'].astype('int64').min()) // 10**9, | |
sizey= .9, #(dfdata['Cumulative P/L'].max() - dfdata['Cumulative P/L'].min()), | |
sizing="contain", | |
opacity=0.2, | |
layer = "below") | |
) | |
#style layout | |
fig.update_layout( | |
height = 600, | |
xaxis=dict( | |
title="Exit Date", | |
tickmode='array', | |
), | |
yaxis=dict( | |
title="Cumulative P/L" | |
) ) | |
st.plotly_chart(fig, theme=None, use_container_width=True,height=600) | |
st.write() | |
df['Per Trade Return Rate'] = df['Return Per Trade']-1 | |
totals = pd.DataFrame([], columns = ['# of Trades', 'Wins', 'Losses', 'Win Rate', 'Profit Factor']) | |
if bot_selections == "Cinnamon Toast" or bot_selections == "Cosmic Cupcake": | |
data = get_hist_info(df.drop('Drawdown %', axis=1).dropna(), principal_balance,'Per Trade Return Rate') | |
else: | |
data = get_hist_info(df.dropna(), principal_balance,'Per Trade Return Rate') | |
totals.loc[len(totals)] = list(i for i in data) | |
totals['Cum. P/L'] = cum_pl-principal_balance | |
totals['Cum. P/L (%)'] = 100*(cum_pl-principal_balance)/principal_balance | |
if df.empty: | |
st.error("Oops! None of the data provided matches your selection(s). Please try again.") | |
else: | |
with st.container(): | |
for row in totals.itertuples(): | |
col1, col2, col3, col4= st.columns(4) | |
c1, c2, c3, c4 = st.columns(4) | |
with col1: | |
st.metric( | |
"Total Trades", | |
f"{row._1:.0f}", | |
) | |
with c1: | |
st.metric( | |
"Profit Factor", | |
f"{row._5:.2f}", | |
) | |
with col2: | |
st.metric( | |
"Wins", | |
f"{row.Wins:.0f}", | |
) | |
with c2: | |
st.metric( | |
"Cumulative P/L", | |
f"${row._6:.2f}", | |
f"{row._7:.2f} %", | |
) | |
with col3: | |
st.metric( | |
"Losses", | |
f"{row.Losses:.0f}", | |
) | |
with c3: | |
st.metric( | |
"Rolling 7 Days", | |
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}", | |
f"{get_rolling_stats(df,lev, otimeheader, 7):.2f}%", | |
) | |
st.metric( | |
"Rolling 30 Days", | |
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}", | |
f"{get_rolling_stats(df,lev, otimeheader, 30):.2f}%", | |
) | |
with col4: | |
st.metric( | |
"Win Rate", | |
f"{row._4:.1f}%", | |
) | |
with c4: | |
st.metric( | |
"Rolling 90 Days", | |
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}", | |
f"{get_rolling_stats(df,lev, otimeheader, 90):.2f}%", | |
) | |
st.metric( | |
"Rolling 180 Days", | |
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}", | |
f"{get_rolling_stats(df,lev, otimeheader, 180):.2f}%", | |
) | |
if bot_selections == "Cinnamon Toast": | |
if submitted: | |
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean', | |
'Sell Price' : 'max', | |
'Net P/L Per Trade': 'mean', | |
'Calculated Return %' : lambda x: np.round(100*lev*x.sum(),2), | |
'DCA': lambda x: int(np.floor(x.max()))}) | |
grouped_df.index = range(1, len(grouped_df)+1) | |
grouped_df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price', | |
'Net P/L Per Trade':'Net P/L', | |
'Calculated Return %':'P/L %'}, inplace=True) | |
else: | |
dca_map = {1: 25/100, 2: 25/100, 3: 25/100, 4: 25/100, 1.1: 50/100, 2.1: 50/100} | |
df['DCA %'] = df['DCA'].map(dca_map) | |
df['Calculated Return %'] = (df['DCA %'])*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade | |
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean', | |
'Sell Price' : 'max', | |
'P/L per token': 'mean', | |
'Calculated Return %' : lambda x: np.round(100*x.sum(),2), | |
'DCA': lambda x: int(np.floor(x.max()))}) | |
grouped_df.index = range(1, len(grouped_df)+1) | |
grouped_df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price', | |
'Calculated Return %':'P/L %', | |
'P/L per token':'Net P/L'}, inplace=True) | |
else: | |
if submitted: | |
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean', | |
'Sell Price' : 'max', | |
'Net P/L Per Trade': 'mean', | |
'Calculated Return %' : lambda x: np.round(100*lev*x.sum(),2)}) | |
grouped_df.index = range(1, len(grouped_df)+1) | |
grouped_df.rename(columns={'Buy Price':'Avg. Buy Price', | |
'Net P/L Per Trade':'Net P/L', | |
'Calculated Return %':'P/L %'}, inplace=True) | |
else: | |
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean', | |
'Sell Price' : 'max', | |
'P/L per token': 'mean', | |
'P/L %':'mean'}) | |
grouped_df.index = range(1, len(grouped_df)+1) | |
grouped_df.rename(columns={'Buy Price':'Avg. Buy Price', | |
'P/L per token':'Net P/L'}, inplace=True) | |
st.subheader("Trade Logs") | |
grouped_df['Entry Date'] = pd.to_datetime(grouped_df['Entry Date']) | |
grouped_df['Exit Date'] = pd.to_datetime(grouped_df['Exit Date']) | |
if bot_selections == "Cosmic Cupcake" or bot_selections == "CT Toasted": | |
coding = cc_coding if bot_selections == "Cosmic Cupcake" else ctt_coding | |
st.dataframe(grouped_df.style.format({'Entry Date':'{:%m-%d-%Y %H:%M:%S}','Exit Date':'{:%m-%d-%Y %H:%M:%S}','Avg. Buy Price': '${:.2f}', 'Sell Price': '${:.2f}', 'Net P/L':'${:.2f}', 'P/L %':'{:.2f}%'})\ | |
.apply(coding, axis=1)\ | |
.applymap(my_style,subset=['Net P/L'])\ | |
.applymap(my_style,subset=['P/L %']), use_container_width=True) | |
new_title = '<div style="text-align: right;"><span style="background-color:lightgrey;"> </span> Not Live Traded</div>' | |
st.markdown(new_title, unsafe_allow_html=True) | |
else: | |
st.dataframe(grouped_df.style.format({'Entry Date':'{:%m-%d-%Y %H:%M:%S}','Exit Date':'{:%m-%d-%Y %H:%M:%S}','Avg. Buy Price': '${:.2f}', 'Sell Price': '${:.2f}', 'Net P/L':'${:.2f}', 'P/L %':'{:.2f}%'})\ | |
.applymap(my_style,subset=['Net P/L'])\ | |
.applymap(my_style,subset=['P/L %']), use_container_width=True) | |
# st.subheader("Checking Status") | |
# if submitted: | |
# st.dataframe(sd_df) | |
if __name__ == "__main__": | |
st.set_page_config( | |
"Trading Bot Dashboard", | |
layout="wide", | |
) | |
runapp() | |
# - | |