Spaces:
Sleeping
Sleeping
anaucoin
commited on
Commit
•
d4c513e
1
Parent(s):
141e16c
V3 push 2
Browse files- app.py +626 -264
- historical_app.py +0 -726
- old_app.py +364 -0
app.py
CHANGED
@@ -20,29 +20,133 @@ import numpy as np
|
|
20 |
import datetime as dt
|
21 |
import matplotlib.pyplot as plt
|
22 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
23 |
|
24 |
import streamlit as st
|
25 |
import plotly.express as px
|
26 |
import altair as alt
|
27 |
import dateutil.parser
|
28 |
-
import
|
29 |
|
30 |
|
31 |
# +
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
@st.experimental_memo
|
33 |
def get_hist_info(df_coin, principal_balance,plheader):
|
34 |
numtrades = int(len(df_coin))
|
35 |
numwin = int(sum(df_coin[plheader] > 0))
|
36 |
numloss = int(sum(df_coin[plheader] < 0))
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
grosswin = sum(df_coin[df_coin[plheader] > 0][plheader])
|
40 |
grossloss = sum(df_coin[df_coin[plheader] < 0][plheader])
|
41 |
-
if grossloss !=0:
|
42 |
pfactor = -1*np.round(grosswin/grossloss,2)
|
43 |
else:
|
44 |
pfactor = np.nan
|
45 |
return numtrades, numwin, numloss, winrate, pfactor
|
|
|
46 |
@st.experimental_memo
|
47 |
def get_rolling_stats(df, lev, otimeheader, days):
|
48 |
max_roll = (df[otimeheader].max() - df[otimeheader].min()).days
|
@@ -58,301 +162,557 @@ def get_rolling_stats(df, lev, otimeheader, days):
|
|
58 |
else:
|
59 |
rolling_perc = np.nan
|
60 |
return 100*rolling_perc
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
@st.experimental_memo
|
|
|
|
|
|
|
|
|
63 |
def filt_df(df, cheader, symbol_selections):
|
64 |
-
"""
|
65 |
-
Inputs: df (pd.DataFrame), cheader (str) and symbol_selections (list[str]).
|
66 |
-
|
67 |
-
Returns a filtered pd.DataFrame containing only data that matches symbol_selections (list[str])
|
68 |
-
from df[cheader].
|
69 |
-
"""
|
70 |
|
71 |
df = df.copy()
|
72 |
df = df[df[cheader].isin(symbol_selections)]
|
73 |
|
74 |
return df
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
@st.cache(ttl=24*3600, allow_output_mutation=True)
|
82 |
def load_data(filename, otimeheader, fmat):
|
83 |
-
df = pd.read_csv(open(filename,'r'), sep='\t') # so as not to mutate cached value
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
df['Buy Price'] = df['Buy Price'].str.replace('$', '', regex=True)
|
88 |
-
df['Sell Price'] = df['Sell Price'].str.replace('$', '', regex=True)
|
89 |
-
df['Buy Price'] = df['Buy Price'].str.replace(',', '', regex=True)
|
90 |
-
df['Sell Price'] = df['Sell Price'].str.replace(',', '', regex=True)
|
91 |
-
df['P/L per token'] = df['P/L per token'].str.replace('$', '', regex=True)
|
92 |
-
df['P/L %'] = df['P/L %'].str.replace('%', '', regex=True)
|
93 |
-
|
94 |
-
df['Buy Price'] = pd.to_numeric(df['Buy Price'])
|
95 |
-
df['Sell Price'] = pd.to_numeric(df['Sell Price'])
|
96 |
-
df['P/L per token'] = pd.to_numeric(df['P/L per token'])
|
97 |
-
df['P/L %'] = pd.to_numeric(df['P/L %'])
|
98 |
-
|
99 |
dateheader = 'Date'
|
100 |
theader = 'Time'
|
101 |
-
|
102 |
df[dateheader] = [tradetimes.split(" ")[0] for tradetimes in df[otimeheader].values]
|
103 |
df[theader] = [tradetimes.split(" ")[1] for tradetimes in df[otimeheader].values]
|
104 |
|
105 |
df[otimeheader]= [dateutil.parser.parse(date+' '+time)
|
106 |
-
|
107 |
-
|
108 |
df[otimeheader] = pd.to_datetime(df[otimeheader])
|
109 |
df['Exit Date'] = pd.to_datetime(df['Exit Date'])
|
110 |
df.sort_values(by=otimeheader, inplace=True)
|
111 |
-
|
112 |
df[dateheader] = [dateutil.parser.parse(date).date() for date in df[dateheader]]
|
113 |
df[theader] = [dateutil.parser.parse(time).time() for time in df[theader]]
|
114 |
df['Trade'] = df.index + 1 #reindex
|
115 |
-
|
116 |
-
df['DCA'] = np.nan
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
129 |
return df
|
130 |
|
131 |
-
def runapp():
|
132 |
-
bot_selections = "Cinnamon Toast"
|
133 |
-
otimeheader = 'Exit Date'
|
134 |
-
fmat = '%Y-%m-%d %H:%M:%S'
|
135 |
-
dollar_cap = 100000.00
|
136 |
-
fees = .075/100
|
137 |
-
st.header(f"{bot_selections} Performance Dashboard :bread: :moneybag:")
|
138 |
-
st.write("Welcome to the Trading Bot Dashboard by BreadBytes! You can use this dashboard to track " +
|
139 |
-
"the performance of our trading bots.")
|
140 |
-
# st.sidebar.header("FAQ")
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
-
|
151 |
-
|
|
|
|
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
no_errors = False
|
174 |
-
with st.container():
|
175 |
-
col1,col2 = st.columns(2)
|
176 |
-
with col2:
|
177 |
-
lev = st.number_input('Leverage', min_value=1, value=1, max_value= 5, step=1)
|
178 |
-
with col1:
|
179 |
-
principal_balance = st.number_input('Starting Balance', min_value=0.00, value=1000.00, max_value= dollar_cap, step=.01)
|
180 |
-
st.write("Choose your DCA setup (for trades before 02/07/2023)")
|
181 |
-
with st.container():
|
182 |
-
col1, col2, col3, col4 = st.columns(4)
|
183 |
-
with col1:
|
184 |
-
dca1 = st.number_input('DCA 1 Allocation', min_value=0, value=25, max_value= 100, step=1)
|
185 |
-
with col2:
|
186 |
-
dca2 = st.number_input('DCA 2 Allocation', min_value=0, value=25, max_value= 100, step=1)
|
187 |
-
with col3:
|
188 |
-
dca3 = st.number_input('DCA 3 Allocation', min_value=0, value=25, max_value= 100, step=1)
|
189 |
-
with col4:
|
190 |
-
dca4 = st.number_input('DCA 4 Allocation', min_value=0, value=25, max_value= 100, step=1)
|
191 |
-
st.write("Choose your DCA setup (for trades on or after 02/07/2023)")
|
192 |
-
with st.container():
|
193 |
-
col1, col2 = st.columns(2)
|
194 |
-
with col1:
|
195 |
-
dca5 = st.number_input('DCA 1 Allocation', min_value=0, value=50, max_value= 100, step=1)
|
196 |
-
with col2:
|
197 |
-
dca6 = st.number_input('DCA 2 Allocation', min_value=0, value=50, max_value= 100, step=1)
|
198 |
-
|
199 |
-
|
200 |
-
#hack way to get button centered
|
201 |
-
c = st.columns(9)
|
202 |
-
with c[4]:
|
203 |
-
submitted = st.form_submit_button("Get Cookin'!")
|
204 |
|
205 |
-
|
206 |
-
dca_map = {1: 25/100, 2: 25/100, 3: 25/100, 4: 25/100, 1.1: 50/100, 2.1: 50/100}
|
207 |
-
df['DCA %'] = df['DCA'].map(dca_map)
|
208 |
-
df['Calculated Return %'] = (df['DCA %'])*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade
|
209 |
-
|
210 |
-
if submitted and principal_balance * lev > dollar_cap:
|
211 |
-
lev = np.floor(dollar_cap/principal_balance)
|
212 |
-
st.error(f"WARNING: (Starting Balance)*(Leverage) exceeds the ${dollar_cap} limit. Using maximum available leverage of {lev}")
|
213 |
-
|
214 |
-
if submitted and no_errors:
|
215 |
-
df = df[(df[dateheader] >= startdate) & (df[dateheader] <= enddate)]
|
216 |
-
|
217 |
-
if len(df) == 0:
|
218 |
-
st.error("There are no available trades matching your selections. Please try again!")
|
219 |
-
no_errors = False
|
220 |
-
if no_errors:
|
221 |
-
|
222 |
-
dca_map = {1: dca1/100, 2: dca2/100, 3: dca3/100, 4: dca4/100, 1.1: dca5/100, 2.1: dca6/100}
|
223 |
-
df['DCA %'] = df['DCA'].map(dca_map)
|
224 |
-
df['Calculated Return %'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade
|
225 |
-
df['DCA'] = np.floor(df['DCA'].values)
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
)
|
300 |
-
with c3:
|
301 |
-
st.metric(
|
302 |
-
"Rolling 7 Days",
|
303 |
-
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
|
304 |
-
f"{get_rolling_stats(df,lev, otimeheader,7):.2f}%",
|
305 |
-
)
|
306 |
-
st.metric(
|
307 |
-
"Rolling 30 Days",
|
308 |
-
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
|
309 |
-
f"{get_rolling_stats(df,lev, otimeheader, 30):.2f}%",
|
310 |
-
)
|
311 |
-
|
312 |
-
with col4:
|
313 |
-
st.metric(
|
314 |
-
"Win Rate",
|
315 |
-
f"{row._4:.1f}%",
|
316 |
-
)
|
317 |
-
with c4:
|
318 |
-
st.metric(
|
319 |
-
"Rolling 90 Days",
|
320 |
-
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
|
321 |
-
f"{get_rolling_stats(df,lev, otimeheader,90):.2f}%",
|
322 |
-
)
|
323 |
-
st.metric(
|
324 |
-
"Rolling 180 Days",
|
325 |
-
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
|
326 |
-
f"{get_rolling_stats(df,lev, otimeheader, 180):.2f}%",
|
327 |
-
)
|
328 |
-
if submitted:
|
329 |
-
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
|
330 |
-
'Sell Price' : 'max',
|
331 |
-
'Net P/L Per Trade': 'mean',
|
332 |
-
'Calculated Return %' : lambda x: np.round(100*lev*x.sum(),2),
|
333 |
-
'DCA': lambda x: int(np.floor(x.max()))})
|
334 |
-
grouped_df.index = range(1, len(grouped_df)+1)
|
335 |
-
grouped_df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price',
|
336 |
-
'Net P/L Per Trade':'Net P/L',
|
337 |
-
'Calculated Return %':'P/L %'}, inplace=True)
|
338 |
-
else:
|
339 |
-
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
|
340 |
-
'Sell Price' : 'max',
|
341 |
-
'P/L per token': 'mean',
|
342 |
-
'Calculated Return %' : lambda x: np.round(100*x.sum(),2),
|
343 |
-
'DCA': lambda x: int(np.floor(x.max()))})
|
344 |
-
grouped_df.index = range(1, len(grouped_df)+1)
|
345 |
-
grouped_df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price',
|
346 |
-
'Calculated Return %':'P/L %',
|
347 |
-
'P/L per token':'Net P/L'}, inplace=True)
|
348 |
-
|
349 |
-
st.subheader("Trade Logs")
|
350 |
-
grouped_df['Entry Date'] = pd.to_datetime(grouped_df['Entry Date'])
|
351 |
-
grouped_df['Exit Date'] = pd.to_datetime(grouped_df['Exit Date'])
|
352 |
-
st.dataframe(grouped_df.style.format({'Entry Date':'{:%m-%d-%Y %H:%M:%S}','Exit Date':'{:%m-%d-%Y %H:%M:%S}','Avg. Buy Price': '${:.2f}', 'Sell Price': '${:.2f}','# of DCAs':'{:.0f}', 'Net P/L':'${:.2f}', 'P/L %' :'{:.2f}%'})\
|
353 |
-
.applymap(my_style,subset=['Net P/L'])\
|
354 |
-
.applymap(my_style,subset=['P/L %']), use_container_width=True)
|
355 |
-
|
356 |
if __name__ == "__main__":
|
357 |
st.set_page_config(
|
358 |
"Trading Bot Dashboard",
|
@@ -362,3 +722,5 @@ if __name__ == "__main__":
|
|
362 |
# -
|
363 |
|
364 |
|
|
|
|
|
|
20 |
import datetime as dt
|
21 |
import matplotlib.pyplot as plt
|
22 |
from pathlib import Path
|
23 |
+
import time
|
24 |
+
import plotly.graph_objects as go
|
25 |
+
import plotly.io as pio
|
26 |
+
from PIL import Image
|
27 |
|
28 |
import streamlit as st
|
29 |
import plotly.express as px
|
30 |
import altair as alt
|
31 |
import dateutil.parser
|
32 |
+
from matplotlib.colors import LinearSegmentedColormap
|
33 |
|
34 |
|
35 |
# +
|
36 |
+
class color:
|
37 |
+
PURPLE = '\033[95m'
|
38 |
+
CYAN = '\033[96m'
|
39 |
+
DARKCYAN = '\033[36m'
|
40 |
+
BLUE = '\033[94m'
|
41 |
+
GREEN = '\033[92m'
|
42 |
+
YELLOW = '\033[93m'
|
43 |
+
RED = '\033[91m'
|
44 |
+
BOLD = '\033[1m'
|
45 |
+
UNDERLINE = '\033[4m'
|
46 |
+
END = '\033[0m'
|
47 |
+
|
48 |
+
@st.experimental_memo
|
49 |
+
def print_PL(amnt, thresh, extras = "" ):
|
50 |
+
if amnt > 0:
|
51 |
+
return color.BOLD + color.GREEN + str(amnt) + extras + color.END
|
52 |
+
elif amnt < 0:
|
53 |
+
return color.BOLD + color.RED + str(amnt)+ extras + color.END
|
54 |
+
elif np.isnan(amnt):
|
55 |
+
return str(np.nan)
|
56 |
+
else:
|
57 |
+
return str(amnt + extras)
|
58 |
+
|
59 |
+
@st.experimental_memo
|
60 |
+
def get_headers(logtype):
|
61 |
+
otimeheader = ""
|
62 |
+
cheader = ""
|
63 |
+
plheader = ""
|
64 |
+
fmat = '%Y-%m-%d %H:%M:%S'
|
65 |
+
|
66 |
+
if logtype == "ByBit":
|
67 |
+
otimeheader = 'Create Time'
|
68 |
+
cheader = 'Contracts'
|
69 |
+
plheader = 'Closed P&L'
|
70 |
+
fmat = '%Y-%m-%d %H:%M:%S'
|
71 |
+
|
72 |
+
if logtype == "BitGet":
|
73 |
+
otimeheader = 'Date'
|
74 |
+
cheader = 'Futures'
|
75 |
+
plheader = 'Realized P/L'
|
76 |
+
fmat = '%Y-%m-%d %H:%M:%S'
|
77 |
+
|
78 |
+
if logtype == "MEXC":
|
79 |
+
otimeheader = 'Trade time'
|
80 |
+
cheader = 'Futures'
|
81 |
+
plheader = 'closing position'
|
82 |
+
fmat = '%Y/%m/%d %H:%M'
|
83 |
+
|
84 |
+
if logtype == "Binance":
|
85 |
+
otimeheader = 'Date'
|
86 |
+
cheader = 'Symbol'
|
87 |
+
plheader = 'Realized Profit'
|
88 |
+
fmat = '%Y-%m-%d %H:%M:%S'
|
89 |
+
|
90 |
+
#if logtype == "Kucoin":
|
91 |
+
# otimeheader = 'Time'
|
92 |
+
# cheader = 'Contract'
|
93 |
+
# plheader = ''
|
94 |
+
# fmat = '%Y/%m/%d %H:%M:%S'
|
95 |
+
|
96 |
+
|
97 |
+
if logtype == "Kraken":
|
98 |
+
otimeheader = 'time'
|
99 |
+
cheader = 'asset'
|
100 |
+
plheader = 'amount'
|
101 |
+
fmat = '%Y-%m-%d %H:%M:%S.%f'
|
102 |
+
|
103 |
+
if logtype == "OkX":
|
104 |
+
otimeheader = '\ufeffOrder Time'
|
105 |
+
cheader = '\ufeffInstrument'
|
106 |
+
plheader = '\ufeffPL'
|
107 |
+
fmat = '%Y-%m-%d %H:%M:%S'
|
108 |
+
|
109 |
+
return otimeheader.lower(), cheader.lower(), plheader.lower(), fmat
|
110 |
+
|
111 |
+
@st.experimental_memo
|
112 |
+
def get_coin_info(df_coin, principal_balance,plheader):
|
113 |
+
numtrades = int(len(df_coin))
|
114 |
+
numwin = int(sum(df_coin[plheader] > 0))
|
115 |
+
numloss = int(sum(df_coin[plheader] < 0))
|
116 |
+
winrate = np.round(100*numwin/numtrades,2)
|
117 |
+
|
118 |
+
grosswin = sum(df_coin[df_coin[plheader] > 0][plheader])
|
119 |
+
grossloss = sum(df_coin[df_coin[plheader] < 0][plheader])
|
120 |
+
if grossloss != 0:
|
121 |
+
pfactor = -1*np.round(grosswin/grossloss,2)
|
122 |
+
else:
|
123 |
+
pfactor = np.nan
|
124 |
+
|
125 |
+
cum_PL = np.round(sum(df_coin[plheader].values),2)
|
126 |
+
cum_PL_perc = np.round(100*cum_PL/principal_balance,2)
|
127 |
+
mean_PL = np.round(sum(df_coin[plheader].values/len(df_coin)),2)
|
128 |
+
mean_PL_perc = np.round(100*mean_PL/principal_balance,2)
|
129 |
+
|
130 |
+
return numtrades, numwin, numloss, winrate, pfactor, cum_PL, cum_PL_perc, mean_PL, mean_PL_perc
|
131 |
+
|
132 |
@st.experimental_memo
|
133 |
def get_hist_info(df_coin, principal_balance,plheader):
|
134 |
numtrades = int(len(df_coin))
|
135 |
numwin = int(sum(df_coin[plheader] > 0))
|
136 |
numloss = int(sum(df_coin[plheader] < 0))
|
137 |
+
if numtrades != 0:
|
138 |
+
winrate = int(np.round(100*numwin/numtrades,2))
|
139 |
+
else:
|
140 |
+
winrate = np.nan
|
141 |
|
142 |
grosswin = sum(df_coin[df_coin[plheader] > 0][plheader])
|
143 |
grossloss = sum(df_coin[df_coin[plheader] < 0][plheader])
|
144 |
+
if grossloss != 0:
|
145 |
pfactor = -1*np.round(grosswin/grossloss,2)
|
146 |
else:
|
147 |
pfactor = np.nan
|
148 |
return numtrades, numwin, numloss, winrate, pfactor
|
149 |
+
|
150 |
@st.experimental_memo
|
151 |
def get_rolling_stats(df, lev, otimeheader, days):
|
152 |
max_roll = (df[otimeheader].max() - df[otimeheader].min()).days
|
|
|
162 |
else:
|
163 |
rolling_perc = np.nan
|
164 |
return 100*rolling_perc
|
165 |
+
@st.experimental_memo
|
166 |
+
def cc_coding(row):
|
167 |
+
return ['background-color: lightgrey'] * len(row) if row['Exit Date'] <= datetime.strptime('2022-12-16 00:00:00','%Y-%m-%d %H:%M:%S').date() else [''] * len(row)
|
168 |
+
def ctt_coding(row):
|
169 |
+
return ['background-color: lightgrey'] * len(row) if row['Exit Date'] <= datetime.strptime('2023-01-02 00:00:00','%Y-%m-%d %H:%M:%S').date() else [''] * len(row)
|
170 |
|
171 |
@st.experimental_memo
|
172 |
+
def my_style(v, props=''):
|
173 |
+
props = 'color:red' if v < 0 else 'color:green'
|
174 |
+
return props
|
175 |
+
|
176 |
def filt_df(df, cheader, symbol_selections):
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
df = df.copy()
|
179 |
df = df[df[cheader].isin(symbol_selections)]
|
180 |
|
181 |
return df
|
182 |
|
183 |
+
def tv_reformat(close50filename):
|
184 |
+
try:
|
185 |
+
data = pd.read_csv(open('CT-Trade-Log-50.csv','r'), sep='[,|\t]', engine='python')
|
186 |
+
except:
|
187 |
+
data = pd.DataFrame([])
|
188 |
+
|
189 |
+
if data.empty:
|
190 |
+
return data
|
191 |
+
else:
|
192 |
+
entry_df = data[data['Type'] == "Entry Long"]
|
193 |
+
exit_df = data[data['Type']=="Exit Long"]
|
194 |
+
|
195 |
+
entry_df.index = range(len(entry_df))
|
196 |
+
exit_df.index = range(len(exit_df))
|
197 |
+
|
198 |
+
df = pd.DataFrame([], columns=['Trade','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %', 'Drawdown %'])
|
199 |
+
|
200 |
+
df['Trade'] = entry_df.index
|
201 |
+
df['Entry Date'] = entry_df['Date/Time']
|
202 |
+
df['Buy Price'] = entry_df['Price USDT']
|
203 |
+
|
204 |
+
df['Sell Price'] = exit_df['Price USDT']
|
205 |
+
df['Exit Date'] = exit_df['Date/Time']
|
206 |
+
df['P/L per token'] = df['Sell Price'] - df['Buy Price']
|
207 |
+
df['P/L %'] = exit_df['Profit %']
|
208 |
+
df['Drawdown %'] = exit_df['Drawdown %']
|
209 |
+
df['Close 50'] = [int(i == "Close 50% of Position") for i in exit_df['Signal']]
|
210 |
+
df.loc[df['Close 50'] == 1, 'Exit Date'] = np.copy(df.loc[df[df['Close 50'] == 1].index.values -1]['Exit Date'])
|
211 |
+
|
212 |
+
grouped_df = df.groupby('Entry Date').agg({'Entry Date': 'min', 'Buy Price':'mean',
|
213 |
+
'Sell Price' : 'mean',
|
214 |
+
'Exit Date': 'max',
|
215 |
+
'P/L per token': 'mean',
|
216 |
+
'P/L %' : 'mean'})
|
217 |
+
|
218 |
+
grouped_df.insert(0,'Trade', range(len(grouped_df)))
|
219 |
+
grouped_df.index = range(len(grouped_df))
|
220 |
+
return grouped_df
|
221 |
|
|
|
222 |
def load_data(filename, otimeheader, fmat):
|
223 |
+
df = pd.read_csv(open(filename,'r'), sep='\t') # so as not to mutate cached value
|
224 |
+
close50filename = filename.split('.')[0] + '-50.' + filename.split('.')[1]
|
225 |
+
df2 = tv_reformat(close50filename)
|
226 |
+
|
227 |
+
if filename == "CT-Trade-Log.csv":
|
228 |
+
df.columns = ['Trade','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %', 'Drawdown %']
|
229 |
+
df.insert(1, 'Signal', ['Long']*len(df))
|
230 |
+
elif filename == "CC-Trade-Log.csv":
|
231 |
+
df.columns = ['Trade','Signal','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %', 'Drawdown %']
|
232 |
+
else:
|
233 |
+
df.columns = ['Trade','Signal','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %']
|
234 |
+
|
235 |
+
if filename != "CT-Toasted-Trade-Log.csv":
|
236 |
+
df['Signal'] = df['Signal'].str.replace(' ', '', regex=True)
|
237 |
+
df['Buy Price'] = df['Buy Price'].str.replace('$', '', regex=True)
|
238 |
+
df['Sell Price'] = df['Sell Price'].str.replace('$', '', regex=True)
|
239 |
+
df['Buy Price'] = df['Buy Price'].str.replace(',', '', regex=True)
|
240 |
+
df['Sell Price'] = df['Sell Price'].str.replace(',', '', regex=True)
|
241 |
+
df['P/L per token'] = df['P/L per token'].str.replace('$', '', regex=True)
|
242 |
+
df['P/L per token'] = df['P/L per token'].str.replace(',', '', regex=True)
|
243 |
+
df['P/L %'] = df['P/L %'].str.replace('%', '', regex=True)
|
244 |
+
|
245 |
+
df['Buy Price'] = pd.to_numeric(df['Buy Price'])
|
246 |
+
df['Sell Price'] = pd.to_numeric(df['Sell Price'])
|
247 |
+
df['P/L per token'] = pd.to_numeric(df['P/L per token'])
|
248 |
+
df['P/L %'] = pd.to_numeric(df['P/L %'])
|
249 |
+
|
250 |
+
if df2.empty:
|
251 |
+
df = df
|
252 |
+
else:
|
253 |
+
df = pd.concat([df,df2], axis=0, ignore_index=True)
|
254 |
+
|
255 |
+
if filename == "CT-Trade-Log.csv":
|
256 |
+
df['Signal'] = ['Long']*len(df)
|
257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
dateheader = 'Date'
|
259 |
theader = 'Time'
|
260 |
+
|
261 |
df[dateheader] = [tradetimes.split(" ")[0] for tradetimes in df[otimeheader].values]
|
262 |
df[theader] = [tradetimes.split(" ")[1] for tradetimes in df[otimeheader].values]
|
263 |
|
264 |
df[otimeheader]= [dateutil.parser.parse(date+' '+time)
|
265 |
+
for date,time in zip(df[dateheader],df[theader])]
|
|
|
266 |
df[otimeheader] = pd.to_datetime(df[otimeheader])
|
267 |
df['Exit Date'] = pd.to_datetime(df['Exit Date'])
|
268 |
df.sort_values(by=otimeheader, inplace=True)
|
269 |
+
|
270 |
df[dateheader] = [dateutil.parser.parse(date).date() for date in df[dateheader]]
|
271 |
df[theader] = [dateutil.parser.parse(time).time() for time in df[theader]]
|
272 |
df['Trade'] = df.index + 1 #reindex
|
|
|
|
|
273 |
|
274 |
+
if filename == "CT-Trade-Log.csv":
|
275 |
+
df['DCA'] = np.nan
|
276 |
+
|
277 |
+
for exit in pd.unique(df['Exit Date']):
|
278 |
+
df_exit = df[df['Exit Date']==exit]
|
279 |
+
if dateutil.parser.parse(str(exit)) < dateutil.parser.parse('2023-02-07 13:00:00'):
|
280 |
+
for i in range(len(df_exit)):
|
281 |
+
ind = df_exit.index[i]
|
282 |
+
df.loc[ind,'DCA'] = i+1
|
283 |
+
|
284 |
+
else:
|
285 |
+
for i in range(len(df_exit)):
|
286 |
+
ind = df_exit.index[i]
|
287 |
+
df.loc[ind,'DCA'] = i+1.1
|
288 |
return df
|
289 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
+
def get_sd_df(sd_df, sd, bot_selections, dca1, dca2, dca3, dca4, dca5, dca6, fees, lev, dollar_cap, principal_balance):
|
292 |
+
sd = 2*.00026
|
293 |
+
# ------ Standard Dev. Calculations.
|
294 |
+
if bot_selections == "Cinnamon Toast":
|
295 |
+
dca_map = {1: dca1/100, 2: dca2/100, 3: dca3/100, 4: dca4/100, 1.1: dca5/100, 2.1: dca6/100}
|
296 |
+
sd_df['DCA %'] = sd_df['DCA'].map(dca_map)
|
297 |
+
sd_df['Calculated Return % (+)'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']*(1+df['Signal'].map(signal_map)*sd) - df['Buy Price']*(1-df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1-df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade
|
298 |
+
sd_df['Calculated Return % (-)'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']*(1-df['Signal'].map(signal_map)*sd)-df['Buy Price']*(1+df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1+df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade
|
299 |
+
sd_df['DCA'] = np.floor(sd_df['DCA'].values)
|
300 |
+
|
301 |
+
sd_df['Return Per Trade (+)'] = np.nan
|
302 |
+
sd_df['Return Per Trade (-)'] = np.nan
|
303 |
+
sd_df['Balance used in Trade (+)'] = np.nan
|
304 |
+
sd_df['Balance used in Trade (-)'] = np.nan
|
305 |
+
sd_df['New Balance (+)'] = np.nan
|
306 |
+
sd_df['New Balance (-)'] = np.nan
|
307 |
+
|
308 |
+
g1 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (+)'].reset_index(name='Return Per Trade (+)')
|
309 |
+
g2 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (-)'].reset_index(name='Return Per Trade (-)')
|
310 |
+
sd_df.loc[sd_df['DCA']==1.0,'Return Per Trade (+)'] = 1+lev*g1['Return Per Trade (+)'].values
|
311 |
+
sd_df.loc[sd_df['DCA']==1.0,'Return Per Trade (-)'] = 1+lev*g2['Return Per Trade (-)'].values
|
312 |
+
|
313 |
+
sd_df['Compounded Return (+)'] = sd_df['Return Per Trade (+)'].cumprod()
|
314 |
+
sd_df['Compounded Return (-)'] = sd_df['Return Per Trade (-)'].cumprod()
|
315 |
+
sd_df.loc[sd_df['DCA']==1.0,'New Balance (+)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df.loc[sd_df['DCA']==1.0,'Compounded Return (+)']]
|
316 |
+
sd_df.loc[sd_df['DCA']==1.0,'Balance used in Trade (+)'] = np.concatenate([[principal_balance], sd_df.loc[sd_df['DCA']==1.0,'New Balance (+)'].values[:-1]])
|
317 |
+
|
318 |
+
sd_df.loc[sd_df['DCA']==1.0,'New Balance (-)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df.loc[sd_df['DCA']==1.0,'Compounded Return (-)']]
|
319 |
+
sd_df.loc[sd_df['DCA']==1.0,'Balance used in Trade (-)'] = np.concatenate([[principal_balance], sd_df.loc[sd_df['DCA']==1.0,'New Balance (-)'].values[:-1]])
|
320 |
+
else:
|
321 |
+
sd_df['Calculated Return % (+)'] = df['Signal'].map(signal_map)*(1-fees)*((df['Sell Price']*(1+df['Signal'].map(signal_map)*sd) - df['Buy Price']*(1-df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1-df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade
|
322 |
+
sd_df['Calculated Return % (-)'] = df['Signal'].map(signal_map)*(1-fees)*((df['Sell Price']*(1-df['Signal'].map(signal_map)*sd)-df['Buy Price']*(1+df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1+df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade
|
323 |
+
sd_df['Return Per Trade (+)'] = np.nan
|
324 |
+
sd_df['Return Per Trade (-)'] = np.nan
|
325 |
+
|
326 |
+
g1 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (+)'].reset_index(name='Return Per Trade (+)')
|
327 |
+
g2 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (-)'].reset_index(name='Return Per Trade (-)')
|
328 |
+
sd_df['Return Per Trade (+)'] = 1+lev*g1['Return Per Trade (+)'].values
|
329 |
+
sd_df['Return Per Trade (-)'] = 1+lev*g2['Return Per Trade (-)'].values
|
330 |
+
|
331 |
+
sd_df['Compounded Return (+)'] = sd_df['Return Per Trade (+)'].cumprod()
|
332 |
+
sd_df['Compounded Return (-)'] = sd_df['Return Per Trade (-)'].cumprod()
|
333 |
+
sd_df['New Balance (+)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df['Compounded Return (+)']]
|
334 |
+
sd_df['Balance used in Trade (+)'] = np.concatenate([[principal_balance], sd_df['New Balance (+)'].values[:-1]])
|
335 |
+
|
336 |
+
sd_df['New Balance (-)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df['Compounded Return (-)']]
|
337 |
+
sd_df['Balance used in Trade (-)'] = np.concatenate([[principal_balance], sd_df['New Balance (-)'].values[:-1]])
|
338 |
+
|
339 |
+
sd_df['Net P/L Per Trade (+)'] = (sd_df['Return Per Trade (+)']-1)*sd_df['Balance used in Trade (+)']
|
340 |
+
sd_df['Cumulative P/L (+)'] = sd_df['Net P/L Per Trade (+)'].cumsum()
|
341 |
+
|
342 |
+
sd_df['Net P/L Per Trade (-)'] = (sd_df['Return Per Trade (-)']-1)*sd_df['Balance used in Trade (-)']
|
343 |
+
sd_df['Cumulative P/L (-)'] = sd_df['Net P/L Per Trade (-)'].cumsum()
|
344 |
+
return sd_df
|
345 |
+
|
346 |
+
def runapp() -> None:
|
347 |
+
bot_selections = "Cinnamon Toast"
|
348 |
+
otimeheader = 'Exit Date'
|
349 |
+
fmat = '%Y-%m-%d %H:%M:%S'
|
350 |
+
fees = .075/100
|
351 |
|
352 |
+
st.header(f"{bot_selections} Performance Dashboard :bread: :moneybag:")
|
353 |
+
no_errors = True
|
354 |
+
st.write("Welcome to the Trading Bot Dashboard by BreadBytes! You can use this dashboard to track " +
|
355 |
+
"the performance of our trading bots.")
|
356 |
|
357 |
+
if bot_selections == "Cinnamon Toast":
|
358 |
+
lev_cap = 5
|
359 |
+
dollar_cap = 1000000000.00
|
360 |
+
data = load_data("CT-Trade-Log.csv",otimeheader, fmat)
|
361 |
+
if bot_selections == "French Toast":
|
362 |
+
lev_cap = 3
|
363 |
+
dollar_cap = 10000000000.00
|
364 |
+
data = load_data("FT-Trade-Log.csv",otimeheader, fmat)
|
365 |
+
if bot_selections == "Short Bread":
|
366 |
+
lev_cap = 5
|
367 |
+
dollar_cap = 100000.00
|
368 |
+
data = load_data("SB-Trade-Log.csv",otimeheader, fmat)
|
369 |
+
if bot_selections == "Cosmic Cupcake":
|
370 |
+
lev_cap = 3
|
371 |
+
dollar_cap = 100000.00
|
372 |
+
data = load_data("CC-Trade-Log.csv",otimeheader, fmat)
|
373 |
+
if bot_selections == "CT Toasted":
|
374 |
+
lev_cap = 5
|
375 |
+
dollar_cap = 100000.00
|
376 |
+
data = load_data("CT-Toasted-Trade-Log.csv",otimeheader, fmat)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
|
378 |
+
df = data.copy(deep=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
|
380 |
+
dateheader = 'Date'
|
381 |
+
theader = 'Time'
|
382 |
+
|
383 |
+
st.subheader("Choose your settings:")
|
384 |
+
with st.form("user input", ):
|
385 |
+
if no_errors:
|
386 |
+
with st.container():
|
387 |
+
col1, col2 = st.columns(2)
|
388 |
+
with col1:
|
389 |
+
try:
|
390 |
+
startdate = st.date_input("Start Date", value=pd.to_datetime(df[otimeheader]).min())
|
391 |
+
except:
|
392 |
+
st.error("Please select your exchange or upload a supported trade log file.")
|
393 |
+
no_errors = False
|
394 |
+
with col2:
|
395 |
+
try:
|
396 |
+
enddate = st.date_input("End Date", value=datetime.today())
|
397 |
+
except:
|
398 |
+
st.error("Please select your exchange or upload a supported trade log file.")
|
399 |
+
no_errors = False
|
400 |
+
#st.sidebar.subheader("Customize your Dashboard")
|
401 |
+
|
402 |
+
if no_errors and (enddate < startdate):
|
403 |
+
st.error("End Date must be later than Start date. Please try again.")
|
404 |
+
no_errors = False
|
405 |
+
with st.container():
|
406 |
+
col1,col2 = st.columns(2)
|
407 |
+
with col2:
|
408 |
+
lev = st.number_input('Leverage', min_value=1, value=1, max_value= lev_cap, step=1)
|
409 |
+
with col1:
|
410 |
+
principal_balance = st.number_input('Starting Balance', min_value=0.00, value=1000.00, max_value= dollar_cap, step=.01)
|
411 |
+
|
412 |
+
if bot_selections == "Cinnamon Toast":
|
413 |
+
st.write("Choose your DCA setup (for trades before 02/07/2023)")
|
414 |
+
with st.container():
|
415 |
+
col1, col2, col3, col4 = st.columns(4)
|
416 |
+
with col1:
|
417 |
+
dca1 = st.number_input('DCA 1 Allocation', min_value=0, value=25, max_value= 100, step=1)
|
418 |
+
with col2:
|
419 |
+
dca2 = st.number_input('DCA 2 Allocation', min_value=0, value=25, max_value= 100, step=1)
|
420 |
+
with col3:
|
421 |
+
dca3 = st.number_input('DCA 3 Allocation', min_value=0, value=25, max_value= 100, step=1)
|
422 |
+
with col4:
|
423 |
+
dca4 = st.number_input('DCA 4 Allocation', min_value=0, value=25, max_value= 100, step=1)
|
424 |
+
st.write("Choose your DCA setup (for trades on or after 02/07/2023)")
|
425 |
+
with st.container():
|
426 |
+
col1, col2 = st.columns(2)
|
427 |
+
with col1:
|
428 |
+
dca5 = st.number_input('DCA 1 Allocation', min_value=0, value=50, max_value= 100, step=1)
|
429 |
+
with col2:
|
430 |
+
dca6 = st.number_input('DCA 2 Allocation', min_value=0, value=50, max_value= 100, step=1)
|
431 |
+
|
432 |
+
#hack way to get button centered
|
433 |
+
c = st.columns(9)
|
434 |
+
with c[4]:
|
435 |
+
submitted = st.form_submit_button("Get Cookin'!")
|
436 |
+
|
437 |
+
if submitted and principal_balance * lev > dollar_cap:
|
438 |
+
lev = np.floor(dollar_cap/principal_balance)
|
439 |
+
st.error(f"WARNING: (Starting Balance)*(Leverage) exceeds the ${dollar_cap} limit. Using maximum available leverage of {lev}")
|
440 |
+
|
441 |
+
if submitted and no_errors:
|
442 |
+
df = df[(df[dateheader] >= startdate) & (df[dateheader] <= enddate)]
|
443 |
+
signal_map = {'Long': 1, 'Short':-1}
|
444 |
+
|
445 |
+
|
446 |
+
if len(df) == 0:
|
447 |
+
st.error("There are no available trades matching your selections. Please try again!")
|
448 |
+
no_errors = False
|
449 |
+
|
450 |
+
if no_errors:
|
451 |
+
if bot_selections == "Cinnamon Toast":
|
452 |
+
dca_map = {1: dca1/100, 2: dca2/100, 3: dca3/100, 4: dca4/100, 1.1: dca5/100, 2.1: dca6/100}
|
453 |
+
df['DCA %'] = df['DCA'].map(dca_map)
|
454 |
+
df['Calculated Return %'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade
|
455 |
+
df['DCA'] = np.floor(df['DCA'].values)
|
456 |
+
|
457 |
+
df['Return Per Trade'] = np.nan
|
458 |
+
df['Balance used in Trade'] = np.nan
|
459 |
+
df['New Balance'] = np.nan
|
460 |
|
461 |
+
g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade')
|
462 |
+
df.loc[df['DCA']==1.0,'Return Per Trade'] = 1+lev*g['Return Per Trade'].values
|
463 |
+
|
464 |
+
df['Compounded Return'] = df['Return Per Trade'].cumprod()
|
465 |
+
df.loc[df['DCA']==1.0,'New Balance'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df.loc[df['DCA']==1.0,'Compounded Return']]
|
466 |
+
df.loc[df['DCA']==1.0,'Balance used in Trade'] = np.concatenate([[principal_balance], df.loc[df['DCA']==1.0,'New Balance'].values[:-1]])
|
467 |
+
else:
|
468 |
+
df['Calculated Return %'] = df['Signal'].map(signal_map)*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade
|
469 |
+
df['Return Per Trade'] = np.nan
|
470 |
+
g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade')
|
471 |
+
df['Return Per Trade'] = 1+lev*g['Return Per Trade'].values
|
472 |
+
|
473 |
+
df['Compounded Return'] = df['Return Per Trade'].cumprod()
|
474 |
+
df['New Balance'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df['Compounded Return']]
|
475 |
+
df['Balance used in Trade'] = np.concatenate([[principal_balance], df['New Balance'].values[:-1]])
|
476 |
+
df['Net P/L Per Trade'] = (df['Return Per Trade']-1)*df['Balance used in Trade']
|
477 |
+
df['Cumulative P/L'] = df['Net P/L Per Trade'].cumsum()
|
478 |
+
|
479 |
+
if bot_selections == "Cinnamon Toast" or bot_selections == "Cosmic Cupcake":
|
480 |
+
cum_pl = df.loc[df.drop('Drawdown %', axis=1).dropna().index[-1],'Cumulative P/L'] + principal_balance
|
481 |
+
#cum_sdp = sd_df.loc[sd_df.drop('Drawdown %', axis=1).dropna().index[-1],'Cumulative P/L (+)'] + principal_balance
|
482 |
+
#cum_sdm = sd_df.loc[sd_df.drop('Drawdown %', axis=1).dropna().index[-1],'Cumulative P/L (-)'] + principal_balance
|
483 |
+
else:
|
484 |
+
cum_pl = df.loc[df.dropna().index[-1],'Cumulative P/L'] + principal_balance
|
485 |
+
#cum_sdp = sd_df.loc[sd_df.dropna().index[-1],'Cumulative P/L (+)'] + principal_balance
|
486 |
+
#cum_sdm = sd_df.loc[sd_df.dropna().index[-1],'Cumulative P/L (-)'] + principal_balance
|
487 |
+
#sd = 2*.00026
|
488 |
+
#sd_df = get_sd_df(get_sd_df(df.copy(), sd, bot_selections, dca1, dca2, dca3, dca4, dca5, dca6, fees, lev, dollar_cap, principal_balance)
|
489 |
+
|
490 |
+
effective_return = 100*((cum_pl - principal_balance)/principal_balance)
|
491 |
+
|
492 |
+
st.header(f"{bot_selections} Results")
|
493 |
+
with st.container():
|
494 |
+
|
495 |
+
if len(bot_selections) > 1:
|
496 |
+
col1, col2 = st.columns(2)
|
497 |
+
with col1:
|
498 |
+
st.metric(
|
499 |
+
"Total Account Balance",
|
500 |
+
f"${cum_pl:.2f}",
|
501 |
+
f"{100*(cum_pl-principal_balance)/(principal_balance):.2f} %",
|
502 |
+
)
|
503 |
+
|
504 |
+
# with col2:
|
505 |
+
# st.write("95% of trades should fall within this 2 std. dev. range.")
|
506 |
+
# st.metric(
|
507 |
+
# "High Range (+ 2 std. dev.)",
|
508 |
+
# f"", #${cum_sdp:.2f}
|
509 |
+
# f"{100*(cum_sdp-principal_balance)/(principal_balance):.2f} %",
|
510 |
+
# )
|
511 |
+
# st.metric(
|
512 |
+
# "Low Range (- 2 std. dev.)",
|
513 |
+
# f"" ,#${cum_sdm:.2f}"
|
514 |
+
# f"{100*(cum_sdm-principal_balance)/(principal_balance):.2f} %",
|
515 |
+
# )
|
516 |
+
if bot_selections == "Cinnamon Toast" or bot_selections == "Cosmic Cupcake":
|
517 |
+
#st.line_chart(data=df.drop('Drawdown %', axis=1).dropna(), x='Exit Date', y='Cumulative P/L', use_container_width=True)
|
518 |
+
dfdata = df.drop('Drawdown %', axis=1).dropna()
|
519 |
+
#sd_df = sd_df.drop('Drawdown %', axis=1).dropna()
|
520 |
+
else:
|
521 |
+
#st.line_chart(data=df.dropna(), x='Exit Date', y='Cumulative P/L', use_container_width=True)
|
522 |
+
dfdata = df.dropna()
|
523 |
+
#sd_df = sd_df.dropna()
|
524 |
+
|
525 |
+
# Create figure
|
526 |
+
fig = go.Figure()
|
527 |
+
|
528 |
+
pyLogo = Image.open("logo.png")
|
529 |
+
|
530 |
+
# fig.add_traces(go.Scatter(x=sd_df['Exit Date'], y = sd_df['Cumulative P/L (+)'],line_shape='spline',
|
531 |
+
# line = dict(smoothing = 1.3, color='rgba(31, 119, 200,0)'), showlegend = False)
|
532 |
+
# )
|
533 |
+
|
534 |
+
# fig.add_traces(go.Scatter(x=sd_df['Exit Date'], y = sd_df['Cumulative P/L (-)'],
|
535 |
+
# line = dict(smoothing = 1.3, color='rgba(31, 119, 200,0)'), line_shape='spline',
|
536 |
+
# fill='tonexty',
|
537 |
+
# fillcolor = 'rgba(31, 119, 200,.2)', name = '+/- Standard Deviation')
|
538 |
+
# )
|
539 |
+
|
540 |
+
# Add trace
|
541 |
+
fig.add_trace(
|
542 |
+
go.Scatter(x=dfdata['Exit Date'], y=np.round(dfdata['Cumulative P/L'].values,2), line_shape='spline',
|
543 |
+
line = {'smoothing': 1.0, 'color' : 'rgba(31, 119, 200,.8)'},
|
544 |
+
name='Cumulative P/L')
|
545 |
+
)
|
546 |
+
buyhold = (principal_balance/dfdata['Buy Price'][dfdata.index[0]])*(dfdata['Buy Price']-dfdata['Buy Price'][dfdata.index[0]])
|
547 |
+
fig.add_trace(go.Scatter(x=dfdata['Exit Date'], y=np.round(buyhold.values,2), line_shape='spline',
|
548 |
+
line = {'smoothing': 1.0, 'color' :'red'}, name = 'Buy & Hold Return')
|
549 |
+
)
|
550 |
+
|
551 |
+
fig.add_layout_image(
|
552 |
+
dict(
|
553 |
+
source=pyLogo,
|
554 |
+
xref="paper",
|
555 |
+
yref="paper",
|
556 |
+
x = 0.05, #dfdata['Exit Date'].astype('int64').min() // 10**9,
|
557 |
+
y = .85, #dfdata['Cumulative P/L'].max(),
|
558 |
+
sizex= .9, #(dfdata['Exit Date'].astype('int64').max() - dfdata['Exit Date'].astype('int64').min()) // 10**9,
|
559 |
+
sizey= .9, #(dfdata['Cumulative P/L'].max() - dfdata['Cumulative P/L'].min()),
|
560 |
+
sizing="contain",
|
561 |
+
opacity=0.2,
|
562 |
+
layer = "below")
|
563 |
+
)
|
564 |
+
|
565 |
+
#style layout
|
566 |
+
fig.update_layout(
|
567 |
+
height = 600,
|
568 |
+
xaxis=dict(
|
569 |
+
title="Exit Date",
|
570 |
+
tickmode='array',
|
571 |
+
),
|
572 |
+
yaxis=dict(
|
573 |
+
title="Cumulative P/L"
|
574 |
+
) )
|
575 |
+
|
576 |
+
st.plotly_chart(fig, theme=None, use_container_width=True,height=600)
|
577 |
+
st.write()
|
578 |
+
df['Per Trade Return Rate'] = df['Return Per Trade']-1
|
579 |
+
|
580 |
+
totals = pd.DataFrame([], columns = ['# of Trades', 'Wins', 'Losses', 'Win Rate', 'Profit Factor'])
|
581 |
+
if bot_selections == "Cinnamon Toast" or bot_selections == "Cosmic Cupcake":
|
582 |
+
data = get_hist_info(df.drop('Drawdown %', axis=1).dropna(), principal_balance,'Per Trade Return Rate')
|
583 |
+
else:
|
584 |
+
data = get_hist_info(df.dropna(), principal_balance,'Per Trade Return Rate')
|
585 |
+
totals.loc[len(totals)] = list(i for i in data)
|
586 |
+
|
587 |
+
totals['Cum. P/L'] = cum_pl-principal_balance
|
588 |
+
totals['Cum. P/L (%)'] = 100*(cum_pl-principal_balance)/principal_balance
|
589 |
+
|
590 |
+
if df.empty:
|
591 |
+
st.error("Oops! None of the data provided matches your selection(s). Please try again.")
|
592 |
+
else:
|
593 |
+
with st.container():
|
594 |
+
for row in totals.itertuples():
|
595 |
+
col1, col2, col3, col4= st.columns(4)
|
596 |
+
c1, c2, c3, c4 = st.columns(4)
|
597 |
+
with col1:
|
598 |
+
st.metric(
|
599 |
+
"Total Trades",
|
600 |
+
f"{row._1:.0f}",
|
601 |
+
)
|
602 |
+
with c1:
|
603 |
+
st.metric(
|
604 |
+
"Profit Factor",
|
605 |
+
f"{row._5:.2f}",
|
606 |
+
)
|
607 |
+
with col2:
|
608 |
+
st.metric(
|
609 |
+
"Wins",
|
610 |
+
f"{row.Wins:.0f}",
|
611 |
+
)
|
612 |
+
with c2:
|
613 |
+
st.metric(
|
614 |
+
"Cumulative P/L",
|
615 |
+
f"${row._6:.2f}",
|
616 |
+
f"{row._7:.2f} %",
|
617 |
+
)
|
618 |
+
with col3:
|
619 |
+
st.metric(
|
620 |
+
"Losses",
|
621 |
+
f"{row.Losses:.0f}",
|
622 |
+
)
|
623 |
+
with c3:
|
624 |
+
st.metric(
|
625 |
+
"Rolling 7 Days",
|
626 |
+
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
|
627 |
+
f"{get_rolling_stats(df,lev, otimeheader, 7):.2f}%",
|
628 |
+
)
|
629 |
+
st.metric(
|
630 |
+
"Rolling 30 Days",
|
631 |
+
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
|
632 |
+
f"{get_rolling_stats(df,lev, otimeheader, 30):.2f}%",
|
633 |
+
)
|
634 |
+
|
635 |
+
with col4:
|
636 |
+
st.metric(
|
637 |
+
"Win Rate",
|
638 |
+
f"{row._4:.1f}%",
|
639 |
+
)
|
640 |
+
with c4:
|
641 |
+
st.metric(
|
642 |
+
"Rolling 90 Days",
|
643 |
+
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
|
644 |
+
f"{get_rolling_stats(df,lev, otimeheader, 90):.2f}%",
|
645 |
+
)
|
646 |
+
st.metric(
|
647 |
+
"Rolling 180 Days",
|
648 |
+
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
|
649 |
+
f"{get_rolling_stats(df,lev, otimeheader, 180):.2f}%",
|
650 |
+
)
|
651 |
|
652 |
+
if bot_selections == "Cinnamon Toast":
|
653 |
+
if submitted:
|
654 |
+
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
|
655 |
+
'Sell Price' : 'max',
|
656 |
+
'Net P/L Per Trade': 'mean',
|
657 |
+
'Calculated Return %' : lambda x: np.round(100*lev*x.sum(),2),
|
658 |
+
'DCA': lambda x: int(np.floor(x.max()))})
|
659 |
+
grouped_df.index = range(1, len(grouped_df)+1)
|
660 |
+
grouped_df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price',
|
661 |
+
'Net P/L Per Trade':'Net P/L',
|
662 |
+
'Calculated Return %':'P/L %'}, inplace=True)
|
663 |
+
else:
|
664 |
+
dca_map = {1: 25/100, 2: 25/100, 3: 25/100, 4: 25/100, 1.1: 50/100, 2.1: 50/100}
|
665 |
+
df['DCA %'] = df['DCA'].map(dca_map)
|
666 |
+
df['Calculated Return %'] = (df['DCA %'])*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade
|
667 |
+
|
668 |
+
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
|
669 |
+
'Sell Price' : 'max',
|
670 |
+
'P/L per token': 'mean',
|
671 |
+
'Calculated Return %' : lambda x: np.round(100*x.sum(),2),
|
672 |
+
'DCA': lambda x: int(np.floor(x.max()))})
|
673 |
+
grouped_df.index = range(1, len(grouped_df)+1)
|
674 |
+
grouped_df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price',
|
675 |
+
'Calculated Return %':'P/L %',
|
676 |
+
'P/L per token':'Net P/L'}, inplace=True)
|
677 |
+
|
678 |
+
else:
|
679 |
+
if submitted:
|
680 |
+
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
|
681 |
+
'Sell Price' : 'max',
|
682 |
+
'Net P/L Per Trade': 'mean',
|
683 |
+
'Calculated Return %' : lambda x: np.round(100*lev*x.sum(),2)})
|
684 |
+
grouped_df.index = range(1, len(grouped_df)+1)
|
685 |
+
grouped_df.rename(columns={'Buy Price':'Avg. Buy Price',
|
686 |
+
'Net P/L Per Trade':'Net P/L',
|
687 |
+
'Calculated Return %':'P/L %'}, inplace=True)
|
688 |
+
else:
|
689 |
+
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
|
690 |
+
'Sell Price' : 'max',
|
691 |
+
'P/L per token': 'mean',
|
692 |
+
'P/L %':'mean'})
|
693 |
+
grouped_df.index = range(1, len(grouped_df)+1)
|
694 |
+
grouped_df.rename(columns={'Buy Price':'Avg. Buy Price',
|
695 |
+
'P/L per token':'Net P/L'}, inplace=True)
|
696 |
+
st.subheader("Trade Logs")
|
697 |
+
grouped_df['Entry Date'] = pd.to_datetime(grouped_df['Entry Date'])
|
698 |
+
grouped_df['Exit Date'] = pd.to_datetime(grouped_df['Exit Date'])
|
699 |
+
if bot_selections == "Cosmic Cupcake" or bot_selections == "CT Toasted":
|
700 |
+
coding = cc_coding if bot_selections == "Cosmic Cupcake" else ctt_coding
|
701 |
+
st.dataframe(grouped_df.style.format({'Entry Date':'{:%m-%d-%Y %H:%M:%S}','Exit Date':'{:%m-%d-%Y %H:%M:%S}','Avg. Buy Price': '${:.2f}', 'Sell Price': '${:.2f}', 'Net P/L':'${:.2f}', 'P/L %':'{:.2f}%'})\
|
702 |
+
.apply(coding, axis=1)\
|
703 |
+
.applymap(my_style,subset=['Net P/L'])\
|
704 |
+
.applymap(my_style,subset=['P/L %']), use_container_width=True)
|
705 |
+
new_title = '<div style="text-align: right;"><span style="background-color:lightgrey;"> </span> Not Live Traded</div>'
|
706 |
+
st.markdown(new_title, unsafe_allow_html=True)
|
707 |
+
else:
|
708 |
+
st.dataframe(grouped_df.style.format({'Entry Date':'{:%m-%d-%Y %H:%M:%S}','Exit Date':'{:%m-%d-%Y %H:%M:%S}','Avg. Buy Price': '${:.2f}', 'Sell Price': '${:.2f}', 'Net P/L':'${:.2f}', 'P/L %':'{:.2f}%'})\
|
709 |
+
.applymap(my_style,subset=['Net P/L'])\
|
710 |
+
.applymap(my_style,subset=['P/L %']), use_container_width=True)
|
711 |
+
|
712 |
+
# st.subheader("Checking Status")
|
713 |
+
# if submitted:
|
714 |
+
# st.dataframe(sd_df)
|
715 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
716 |
if __name__ == "__main__":
|
717 |
st.set_page_config(
|
718 |
"Trading Bot Dashboard",
|
|
|
722 |
# -
|
723 |
|
724 |
|
725 |
+
|
726 |
+
|
historical_app.py
DELETED
@@ -1,726 +0,0 @@
|
|
1 |
-
# ---
|
2 |
-
# jupyter:
|
3 |
-
# jupytext:
|
4 |
-
# text_representation:
|
5 |
-
# extension: .py
|
6 |
-
# format_name: light
|
7 |
-
# format_version: '1.5'
|
8 |
-
# jupytext_version: 1.14.2
|
9 |
-
# kernelspec:
|
10 |
-
# display_name: Python [conda env:bbytes] *
|
11 |
-
# language: python
|
12 |
-
# name: conda-env-bbytes-py
|
13 |
-
# ---
|
14 |
-
|
15 |
-
# +
|
16 |
-
import csv
|
17 |
-
import pandas as pd
|
18 |
-
from datetime import datetime, timedelta
|
19 |
-
import numpy as np
|
20 |
-
import datetime as dt
|
21 |
-
import matplotlib.pyplot as plt
|
22 |
-
from pathlib import Path
|
23 |
-
import time
|
24 |
-
import plotly.graph_objects as go
|
25 |
-
import plotly.io as pio
|
26 |
-
from PIL import Image
|
27 |
-
|
28 |
-
import streamlit as st
|
29 |
-
import plotly.express as px
|
30 |
-
import altair as alt
|
31 |
-
import dateutil.parser
|
32 |
-
from matplotlib.colors import LinearSegmentedColormap
|
33 |
-
|
34 |
-
|
35 |
-
# +
|
36 |
-
class color:
|
37 |
-
PURPLE = '\033[95m'
|
38 |
-
CYAN = '\033[96m'
|
39 |
-
DARKCYAN = '\033[36m'
|
40 |
-
BLUE = '\033[94m'
|
41 |
-
GREEN = '\033[92m'
|
42 |
-
YELLOW = '\033[93m'
|
43 |
-
RED = '\033[91m'
|
44 |
-
BOLD = '\033[1m'
|
45 |
-
UNDERLINE = '\033[4m'
|
46 |
-
END = '\033[0m'
|
47 |
-
|
48 |
-
@st.experimental_memo
|
49 |
-
def print_PL(amnt, thresh, extras = "" ):
|
50 |
-
if amnt > 0:
|
51 |
-
return color.BOLD + color.GREEN + str(amnt) + extras + color.END
|
52 |
-
elif amnt < 0:
|
53 |
-
return color.BOLD + color.RED + str(amnt)+ extras + color.END
|
54 |
-
elif np.isnan(amnt):
|
55 |
-
return str(np.nan)
|
56 |
-
else:
|
57 |
-
return str(amnt + extras)
|
58 |
-
|
59 |
-
@st.experimental_memo
|
60 |
-
def get_headers(logtype):
|
61 |
-
otimeheader = ""
|
62 |
-
cheader = ""
|
63 |
-
plheader = ""
|
64 |
-
fmat = '%Y-%m-%d %H:%M:%S'
|
65 |
-
|
66 |
-
if logtype == "ByBit":
|
67 |
-
otimeheader = 'Create Time'
|
68 |
-
cheader = 'Contracts'
|
69 |
-
plheader = 'Closed P&L'
|
70 |
-
fmat = '%Y-%m-%d %H:%M:%S'
|
71 |
-
|
72 |
-
if logtype == "BitGet":
|
73 |
-
otimeheader = 'Date'
|
74 |
-
cheader = 'Futures'
|
75 |
-
plheader = 'Realized P/L'
|
76 |
-
fmat = '%Y-%m-%d %H:%M:%S'
|
77 |
-
|
78 |
-
if logtype == "MEXC":
|
79 |
-
otimeheader = 'Trade time'
|
80 |
-
cheader = 'Futures'
|
81 |
-
plheader = 'closing position'
|
82 |
-
fmat = '%Y/%m/%d %H:%M'
|
83 |
-
|
84 |
-
if logtype == "Binance":
|
85 |
-
otimeheader = 'Date'
|
86 |
-
cheader = 'Symbol'
|
87 |
-
plheader = 'Realized Profit'
|
88 |
-
fmat = '%Y-%m-%d %H:%M:%S'
|
89 |
-
|
90 |
-
#if logtype == "Kucoin":
|
91 |
-
# otimeheader = 'Time'
|
92 |
-
# cheader = 'Contract'
|
93 |
-
# plheader = ''
|
94 |
-
# fmat = '%Y/%m/%d %H:%M:%S'
|
95 |
-
|
96 |
-
|
97 |
-
if logtype == "Kraken":
|
98 |
-
otimeheader = 'time'
|
99 |
-
cheader = 'asset'
|
100 |
-
plheader = 'amount'
|
101 |
-
fmat = '%Y-%m-%d %H:%M:%S.%f'
|
102 |
-
|
103 |
-
if logtype == "OkX":
|
104 |
-
otimeheader = '\ufeffOrder Time'
|
105 |
-
cheader = '\ufeffInstrument'
|
106 |
-
plheader = '\ufeffPL'
|
107 |
-
fmat = '%Y-%m-%d %H:%M:%S'
|
108 |
-
|
109 |
-
return otimeheader.lower(), cheader.lower(), plheader.lower(), fmat
|
110 |
-
|
111 |
-
@st.experimental_memo
|
112 |
-
def get_coin_info(df_coin, principal_balance,plheader):
|
113 |
-
numtrades = int(len(df_coin))
|
114 |
-
numwin = int(sum(df_coin[plheader] > 0))
|
115 |
-
numloss = int(sum(df_coin[plheader] < 0))
|
116 |
-
winrate = np.round(100*numwin/numtrades,2)
|
117 |
-
|
118 |
-
grosswin = sum(df_coin[df_coin[plheader] > 0][plheader])
|
119 |
-
grossloss = sum(df_coin[df_coin[plheader] < 0][plheader])
|
120 |
-
if grossloss != 0:
|
121 |
-
pfactor = -1*np.round(grosswin/grossloss,2)
|
122 |
-
else:
|
123 |
-
pfactor = np.nan
|
124 |
-
|
125 |
-
cum_PL = np.round(sum(df_coin[plheader].values),2)
|
126 |
-
cum_PL_perc = np.round(100*cum_PL/principal_balance,2)
|
127 |
-
mean_PL = np.round(sum(df_coin[plheader].values/len(df_coin)),2)
|
128 |
-
mean_PL_perc = np.round(100*mean_PL/principal_balance,2)
|
129 |
-
|
130 |
-
return numtrades, numwin, numloss, winrate, pfactor, cum_PL, cum_PL_perc, mean_PL, mean_PL_perc
|
131 |
-
|
132 |
-
@st.experimental_memo
|
133 |
-
def get_hist_info(df_coin, principal_balance,plheader):
|
134 |
-
numtrades = int(len(df_coin))
|
135 |
-
numwin = int(sum(df_coin[plheader] > 0))
|
136 |
-
numloss = int(sum(df_coin[plheader] < 0))
|
137 |
-
if numtrades != 0:
|
138 |
-
winrate = int(np.round(100*numwin/numtrades,2))
|
139 |
-
else:
|
140 |
-
winrate = np.nan
|
141 |
-
|
142 |
-
grosswin = sum(df_coin[df_coin[plheader] > 0][plheader])
|
143 |
-
grossloss = sum(df_coin[df_coin[plheader] < 0][plheader])
|
144 |
-
if grossloss != 0:
|
145 |
-
pfactor = -1*np.round(grosswin/grossloss,2)
|
146 |
-
else:
|
147 |
-
pfactor = np.nan
|
148 |
-
return numtrades, numwin, numloss, winrate, pfactor
|
149 |
-
|
150 |
-
@st.experimental_memo
|
151 |
-
def get_rolling_stats(df, lev, otimeheader, days):
|
152 |
-
max_roll = (df[otimeheader].max() - df[otimeheader].min()).days
|
153 |
-
|
154 |
-
if max_roll >= days:
|
155 |
-
rollend = df[otimeheader].max()-timedelta(days=days)
|
156 |
-
rolling_df = df[df[otimeheader] >= rollend]
|
157 |
-
|
158 |
-
if len(rolling_df) > 0:
|
159 |
-
rolling_perc = rolling_df['Return Per Trade'].dropna().cumprod().values[-1]-1
|
160 |
-
else:
|
161 |
-
rolling_perc = np.nan
|
162 |
-
else:
|
163 |
-
rolling_perc = np.nan
|
164 |
-
return 100*rolling_perc
|
165 |
-
@st.experimental_memo
|
166 |
-
def cc_coding(row):
|
167 |
-
return ['background-color: lightgrey'] * len(row) if row['Exit Date'] <= datetime.strptime('2022-12-16 00:00:00','%Y-%m-%d %H:%M:%S').date() else [''] * len(row)
|
168 |
-
def ctt_coding(row):
|
169 |
-
return ['background-color: lightgrey'] * len(row) if row['Exit Date'] <= datetime.strptime('2023-01-02 00:00:00','%Y-%m-%d %H:%M:%S').date() else [''] * len(row)
|
170 |
-
|
171 |
-
@st.experimental_memo
|
172 |
-
def my_style(v, props=''):
|
173 |
-
props = 'color:red' if v < 0 else 'color:green'
|
174 |
-
return props
|
175 |
-
|
176 |
-
def filt_df(df, cheader, symbol_selections):
|
177 |
-
|
178 |
-
df = df.copy()
|
179 |
-
df = df[df[cheader].isin(symbol_selections)]
|
180 |
-
|
181 |
-
return df
|
182 |
-
|
183 |
-
def tv_reformat(close50filename):
|
184 |
-
try:
|
185 |
-
data = pd.read_csv(open('CT-Trade-Log-50.csv','r'), sep='[,|\t]', engine='python')
|
186 |
-
except:
|
187 |
-
data = pd.DataFrame([])
|
188 |
-
|
189 |
-
if data.empty:
|
190 |
-
return data
|
191 |
-
else:
|
192 |
-
entry_df = data[data['Type'] == "Entry Long"]
|
193 |
-
exit_df = data[data['Type']=="Exit Long"]
|
194 |
-
|
195 |
-
entry_df.index = range(len(entry_df))
|
196 |
-
exit_df.index = range(len(exit_df))
|
197 |
-
|
198 |
-
df = pd.DataFrame([], columns=['Trade','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %', 'Drawdown %'])
|
199 |
-
|
200 |
-
df['Trade'] = entry_df.index
|
201 |
-
df['Entry Date'] = entry_df['Date/Time']
|
202 |
-
df['Buy Price'] = entry_df['Price USDT']
|
203 |
-
|
204 |
-
df['Sell Price'] = exit_df['Price USDT']
|
205 |
-
df['Exit Date'] = exit_df['Date/Time']
|
206 |
-
df['P/L per token'] = df['Sell Price'] - df['Buy Price']
|
207 |
-
df['P/L %'] = exit_df['Profit %']
|
208 |
-
df['Drawdown %'] = exit_df['Drawdown %']
|
209 |
-
df['Close 50'] = [int(i == "Close 50% of Position") for i in exit_df['Signal']]
|
210 |
-
df.loc[df['Close 50'] == 1, 'Exit Date'] = np.copy(df.loc[df[df['Close 50'] == 1].index.values -1]['Exit Date'])
|
211 |
-
|
212 |
-
grouped_df = df.groupby('Entry Date').agg({'Entry Date': 'min', 'Buy Price':'mean',
|
213 |
-
'Sell Price' : 'mean',
|
214 |
-
'Exit Date': 'max',
|
215 |
-
'P/L per token': 'mean',
|
216 |
-
'P/L %' : 'mean'})
|
217 |
-
|
218 |
-
grouped_df.insert(0,'Trade', range(len(grouped_df)))
|
219 |
-
grouped_df.index = range(len(grouped_df))
|
220 |
-
return grouped_df
|
221 |
-
|
222 |
-
def load_data(filename, otimeheader, fmat):
|
223 |
-
df = pd.read_csv(open(filename,'r'), sep='\t') # so as not to mutate cached value
|
224 |
-
close50filename = filename.split('.')[0] + '-50.' + filename.split('.')[1]
|
225 |
-
df2 = tv_reformat(close50filename)
|
226 |
-
|
227 |
-
if filename == "CT-Trade-Log.csv":
|
228 |
-
df.columns = ['Trade','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %', 'Drawdown %']
|
229 |
-
df.insert(1, 'Signal', ['Long']*len(df))
|
230 |
-
elif filename == "CC-Trade-Log.csv":
|
231 |
-
df.columns = ['Trade','Signal','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %', 'Drawdown %']
|
232 |
-
else:
|
233 |
-
df.columns = ['Trade','Signal','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %']
|
234 |
-
|
235 |
-
if filename != "CT-Toasted-Trade-Log.csv":
|
236 |
-
df['Signal'] = df['Signal'].str.replace(' ', '', regex=True)
|
237 |
-
df['Buy Price'] = df['Buy Price'].str.replace('$', '', regex=True)
|
238 |
-
df['Sell Price'] = df['Sell Price'].str.replace('$', '', regex=True)
|
239 |
-
df['Buy Price'] = df['Buy Price'].str.replace(',', '', regex=True)
|
240 |
-
df['Sell Price'] = df['Sell Price'].str.replace(',', '', regex=True)
|
241 |
-
df['P/L per token'] = df['P/L per token'].str.replace('$', '', regex=True)
|
242 |
-
df['P/L per token'] = df['P/L per token'].str.replace(',', '', regex=True)
|
243 |
-
df['P/L %'] = df['P/L %'].str.replace('%', '', regex=True)
|
244 |
-
|
245 |
-
df['Buy Price'] = pd.to_numeric(df['Buy Price'])
|
246 |
-
df['Sell Price'] = pd.to_numeric(df['Sell Price'])
|
247 |
-
df['P/L per token'] = pd.to_numeric(df['P/L per token'])
|
248 |
-
df['P/L %'] = pd.to_numeric(df['P/L %'])
|
249 |
-
|
250 |
-
if df2.empty:
|
251 |
-
df = df
|
252 |
-
else:
|
253 |
-
df = pd.concat([df,df2], axis=0, ignore_index=True)
|
254 |
-
|
255 |
-
if filename == "CT-Trade-Log.csv":
|
256 |
-
df['Signal'] = ['Long']*len(df)
|
257 |
-
|
258 |
-
dateheader = 'Date'
|
259 |
-
theader = 'Time'
|
260 |
-
|
261 |
-
df[dateheader] = [tradetimes.split(" ")[0] for tradetimes in df[otimeheader].values]
|
262 |
-
df[theader] = [tradetimes.split(" ")[1] for tradetimes in df[otimeheader].values]
|
263 |
-
|
264 |
-
df[otimeheader]= [dateutil.parser.parse(date+' '+time)
|
265 |
-
for date,time in zip(df[dateheader],df[theader])]
|
266 |
-
df[otimeheader] = pd.to_datetime(df[otimeheader])
|
267 |
-
df['Exit Date'] = pd.to_datetime(df['Exit Date'])
|
268 |
-
df.sort_values(by=otimeheader, inplace=True)
|
269 |
-
|
270 |
-
df[dateheader] = [dateutil.parser.parse(date).date() for date in df[dateheader]]
|
271 |
-
df[theader] = [dateutil.parser.parse(time).time() for time in df[theader]]
|
272 |
-
df['Trade'] = df.index + 1 #reindex
|
273 |
-
|
274 |
-
if filename == "CT-Trade-Log.csv":
|
275 |
-
df['DCA'] = np.nan
|
276 |
-
|
277 |
-
for exit in pd.unique(df['Exit Date']):
|
278 |
-
df_exit = df[df['Exit Date']==exit]
|
279 |
-
if dateutil.parser.parse(str(exit)) < dateutil.parser.parse('2023-02-07 13:00:00'):
|
280 |
-
for i in range(len(df_exit)):
|
281 |
-
ind = df_exit.index[i]
|
282 |
-
df.loc[ind,'DCA'] = i+1
|
283 |
-
|
284 |
-
else:
|
285 |
-
for i in range(len(df_exit)):
|
286 |
-
ind = df_exit.index[i]
|
287 |
-
df.loc[ind,'DCA'] = i+1.1
|
288 |
-
return df
|
289 |
-
|
290 |
-
|
291 |
-
def get_sd_df(sd_df, sd, bot_selections, dca1, dca2, dca3, dca4, dca5, dca6, fees, lev, dollar_cap, principal_balance):
|
292 |
-
sd = 2*.00026
|
293 |
-
# ------ Standard Dev. Calculations.
|
294 |
-
if bot_selections == "Cinnamon Toast":
|
295 |
-
dca_map = {1: dca1/100, 2: dca2/100, 3: dca3/100, 4: dca4/100, 1.1: dca5/100, 2.1: dca6/100}
|
296 |
-
sd_df['DCA %'] = sd_df['DCA'].map(dca_map)
|
297 |
-
sd_df['Calculated Return % (+)'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']*(1+df['Signal'].map(signal_map)*sd) - df['Buy Price']*(1-df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1-df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade
|
298 |
-
sd_df['Calculated Return % (-)'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']*(1-df['Signal'].map(signal_map)*sd)-df['Buy Price']*(1+df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1+df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade
|
299 |
-
sd_df['DCA'] = np.floor(sd_df['DCA'].values)
|
300 |
-
|
301 |
-
sd_df['Return Per Trade (+)'] = np.nan
|
302 |
-
sd_df['Return Per Trade (-)'] = np.nan
|
303 |
-
sd_df['Balance used in Trade (+)'] = np.nan
|
304 |
-
sd_df['Balance used in Trade (-)'] = np.nan
|
305 |
-
sd_df['New Balance (+)'] = np.nan
|
306 |
-
sd_df['New Balance (-)'] = np.nan
|
307 |
-
|
308 |
-
g1 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (+)'].reset_index(name='Return Per Trade (+)')
|
309 |
-
g2 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (-)'].reset_index(name='Return Per Trade (-)')
|
310 |
-
sd_df.loc[sd_df['DCA']==1.0,'Return Per Trade (+)'] = 1+lev*g1['Return Per Trade (+)'].values
|
311 |
-
sd_df.loc[sd_df['DCA']==1.0,'Return Per Trade (-)'] = 1+lev*g2['Return Per Trade (-)'].values
|
312 |
-
|
313 |
-
sd_df['Compounded Return (+)'] = sd_df['Return Per Trade (+)'].cumprod()
|
314 |
-
sd_df['Compounded Return (-)'] = sd_df['Return Per Trade (-)'].cumprod()
|
315 |
-
sd_df.loc[sd_df['DCA']==1.0,'New Balance (+)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df.loc[sd_df['DCA']==1.0,'Compounded Return (+)']]
|
316 |
-
sd_df.loc[sd_df['DCA']==1.0,'Balance used in Trade (+)'] = np.concatenate([[principal_balance], sd_df.loc[sd_df['DCA']==1.0,'New Balance (+)'].values[:-1]])
|
317 |
-
|
318 |
-
sd_df.loc[sd_df['DCA']==1.0,'New Balance (-)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df.loc[sd_df['DCA']==1.0,'Compounded Return (-)']]
|
319 |
-
sd_df.loc[sd_df['DCA']==1.0,'Balance used in Trade (-)'] = np.concatenate([[principal_balance], sd_df.loc[sd_df['DCA']==1.0,'New Balance (-)'].values[:-1]])
|
320 |
-
else:
|
321 |
-
sd_df['Calculated Return % (+)'] = df['Signal'].map(signal_map)*(1-fees)*((df['Sell Price']*(1+df['Signal'].map(signal_map)*sd) - df['Buy Price']*(1-df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1-df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade
|
322 |
-
sd_df['Calculated Return % (-)'] = df['Signal'].map(signal_map)*(1-fees)*((df['Sell Price']*(1-df['Signal'].map(signal_map)*sd)-df['Buy Price']*(1+df['Signal'].map(signal_map)*sd))/df['Buy Price']*(1+df['Signal'].map(signal_map)*sd) - fees) #accounts for fees on open and close of trade
|
323 |
-
sd_df['Return Per Trade (+)'] = np.nan
|
324 |
-
sd_df['Return Per Trade (-)'] = np.nan
|
325 |
-
|
326 |
-
g1 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (+)'].reset_index(name='Return Per Trade (+)')
|
327 |
-
g2 = sd_df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return % (-)'].reset_index(name='Return Per Trade (-)')
|
328 |
-
sd_df['Return Per Trade (+)'] = 1+lev*g1['Return Per Trade (+)'].values
|
329 |
-
sd_df['Return Per Trade (-)'] = 1+lev*g2['Return Per Trade (-)'].values
|
330 |
-
|
331 |
-
sd_df['Compounded Return (+)'] = sd_df['Return Per Trade (+)'].cumprod()
|
332 |
-
sd_df['Compounded Return (-)'] = sd_df['Return Per Trade (-)'].cumprod()
|
333 |
-
sd_df['New Balance (+)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df['Compounded Return (+)']]
|
334 |
-
sd_df['Balance used in Trade (+)'] = np.concatenate([[principal_balance], sd_df['New Balance (+)'].values[:-1]])
|
335 |
-
|
336 |
-
sd_df['New Balance (-)'] = [min(dollar_cap/lev, bal*principal_balance) for bal in sd_df['Compounded Return (-)']]
|
337 |
-
sd_df['Balance used in Trade (-)'] = np.concatenate([[principal_balance], sd_df['New Balance (-)'].values[:-1]])
|
338 |
-
|
339 |
-
sd_df['Net P/L Per Trade (+)'] = (sd_df['Return Per Trade (+)']-1)*sd_df['Balance used in Trade (+)']
|
340 |
-
sd_df['Cumulative P/L (+)'] = sd_df['Net P/L Per Trade (+)'].cumsum()
|
341 |
-
|
342 |
-
sd_df['Net P/L Per Trade (-)'] = (sd_df['Return Per Trade (-)']-1)*sd_df['Balance used in Trade (-)']
|
343 |
-
sd_df['Cumulative P/L (-)'] = sd_df['Net P/L Per Trade (-)'].cumsum()
|
344 |
-
return sd_df
|
345 |
-
|
346 |
-
def runapp() -> None:
|
347 |
-
bot_selections = "Cinnamon Toast"
|
348 |
-
otimeheader = 'Exit Date'
|
349 |
-
fmat = '%Y-%m-%d %H:%M:%S'
|
350 |
-
fees = .075/100
|
351 |
-
|
352 |
-
st.header(f"{bot_selections} Performance Dashboard :bread: :moneybag:")
|
353 |
-
no_errors = True
|
354 |
-
st.write("Welcome to the Trading Bot Dashboard by BreadBytes! You can use this dashboard to track " +
|
355 |
-
"the performance of our trading bots.")
|
356 |
-
|
357 |
-
if bot_selections == "Cinnamon Toast":
|
358 |
-
lev_cap = 5
|
359 |
-
dollar_cap = 1000000000.00
|
360 |
-
data = load_data("CT-Trade-Log.csv",otimeheader, fmat)
|
361 |
-
if bot_selections == "French Toast":
|
362 |
-
lev_cap = 3
|
363 |
-
dollar_cap = 10000000000.00
|
364 |
-
data = load_data("FT-Trade-Log.csv",otimeheader, fmat)
|
365 |
-
if bot_selections == "Short Bread":
|
366 |
-
lev_cap = 5
|
367 |
-
dollar_cap = 100000.00
|
368 |
-
data = load_data("SB-Trade-Log.csv",otimeheader, fmat)
|
369 |
-
if bot_selections == "Cosmic Cupcake":
|
370 |
-
lev_cap = 3
|
371 |
-
dollar_cap = 100000.00
|
372 |
-
data = load_data("CC-Trade-Log.csv",otimeheader, fmat)
|
373 |
-
if bot_selections == "CT Toasted":
|
374 |
-
lev_cap = 5
|
375 |
-
dollar_cap = 100000.00
|
376 |
-
data = load_data("CT-Toasted-Trade-Log.csv",otimeheader, fmat)
|
377 |
-
|
378 |
-
df = data.copy(deep=True)
|
379 |
-
|
380 |
-
dateheader = 'Date'
|
381 |
-
theader = 'Time'
|
382 |
-
|
383 |
-
st.subheader("Choose your settings:")
|
384 |
-
with st.form("user input", ):
|
385 |
-
if no_errors:
|
386 |
-
with st.container():
|
387 |
-
col1, col2 = st.columns(2)
|
388 |
-
with col1:
|
389 |
-
try:
|
390 |
-
startdate = st.date_input("Start Date", value=pd.to_datetime(df[otimeheader]).min())
|
391 |
-
except:
|
392 |
-
st.error("Please select your exchange or upload a supported trade log file.")
|
393 |
-
no_errors = False
|
394 |
-
with col2:
|
395 |
-
try:
|
396 |
-
enddate = st.date_input("End Date", value=datetime.today())
|
397 |
-
except:
|
398 |
-
st.error("Please select your exchange or upload a supported trade log file.")
|
399 |
-
no_errors = False
|
400 |
-
#st.sidebar.subheader("Customize your Dashboard")
|
401 |
-
|
402 |
-
if no_errors and (enddate < startdate):
|
403 |
-
st.error("End Date must be later than Start date. Please try again.")
|
404 |
-
no_errors = False
|
405 |
-
with st.container():
|
406 |
-
col1,col2 = st.columns(2)
|
407 |
-
with col2:
|
408 |
-
lev = st.number_input('Leverage', min_value=1, value=1, max_value= lev_cap, step=1)
|
409 |
-
with col1:
|
410 |
-
principal_balance = st.number_input('Starting Balance', min_value=0.00, value=1000.00, max_value= dollar_cap, step=.01)
|
411 |
-
|
412 |
-
if bot_selections == "Cinnamon Toast":
|
413 |
-
st.write("Choose your DCA setup (for trades before 02/07/2023)")
|
414 |
-
with st.container():
|
415 |
-
col1, col2, col3, col4 = st.columns(4)
|
416 |
-
with col1:
|
417 |
-
dca1 = st.number_input('DCA 1 Allocation', min_value=0, value=25, max_value= 100, step=1)
|
418 |
-
with col2:
|
419 |
-
dca2 = st.number_input('DCA 2 Allocation', min_value=0, value=25, max_value= 100, step=1)
|
420 |
-
with col3:
|
421 |
-
dca3 = st.number_input('DCA 3 Allocation', min_value=0, value=25, max_value= 100, step=1)
|
422 |
-
with col4:
|
423 |
-
dca4 = st.number_input('DCA 4 Allocation', min_value=0, value=25, max_value= 100, step=1)
|
424 |
-
st.write("Choose your DCA setup (for trades on or after 02/07/2023)")
|
425 |
-
with st.container():
|
426 |
-
col1, col2 = st.columns(2)
|
427 |
-
with col1:
|
428 |
-
dca5 = st.number_input('DCA 1 Allocation', min_value=0, value=50, max_value= 100, step=1)
|
429 |
-
with col2:
|
430 |
-
dca6 = st.number_input('DCA 2 Allocation', min_value=0, value=50, max_value= 100, step=1)
|
431 |
-
|
432 |
-
#hack way to get button centered
|
433 |
-
c = st.columns(9)
|
434 |
-
with c[4]:
|
435 |
-
submitted = st.form_submit_button("Get Cookin'!")
|
436 |
-
|
437 |
-
if submitted and principal_balance * lev > dollar_cap:
|
438 |
-
lev = np.floor(dollar_cap/principal_balance)
|
439 |
-
st.error(f"WARNING: (Starting Balance)*(Leverage) exceeds the ${dollar_cap} limit. Using maximum available leverage of {lev}")
|
440 |
-
|
441 |
-
if submitted and no_errors:
|
442 |
-
df = df[(df[dateheader] >= startdate) & (df[dateheader] <= enddate)]
|
443 |
-
signal_map = {'Long': 1, 'Short':-1}
|
444 |
-
|
445 |
-
|
446 |
-
if len(df) == 0:
|
447 |
-
st.error("There are no available trades matching your selections. Please try again!")
|
448 |
-
no_errors = False
|
449 |
-
|
450 |
-
if no_errors:
|
451 |
-
if bot_selections == "Cinnamon Toast":
|
452 |
-
dca_map = {1: dca1/100, 2: dca2/100, 3: dca3/100, 4: dca4/100, 1.1: dca5/100, 2.1: dca6/100}
|
453 |
-
df['DCA %'] = df['DCA'].map(dca_map)
|
454 |
-
df['Calculated Return %'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade
|
455 |
-
df['DCA'] = np.floor(df['DCA'].values)
|
456 |
-
|
457 |
-
df['Return Per Trade'] = np.nan
|
458 |
-
df['Balance used in Trade'] = np.nan
|
459 |
-
df['New Balance'] = np.nan
|
460 |
-
|
461 |
-
g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade')
|
462 |
-
df.loc[df['DCA']==1.0,'Return Per Trade'] = 1+lev*g['Return Per Trade'].values
|
463 |
-
|
464 |
-
df['Compounded Return'] = df['Return Per Trade'].cumprod()
|
465 |
-
df.loc[df['DCA']==1.0,'New Balance'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df.loc[df['DCA']==1.0,'Compounded Return']]
|
466 |
-
df.loc[df['DCA']==1.0,'Balance used in Trade'] = np.concatenate([[principal_balance], df.loc[df['DCA']==1.0,'New Balance'].values[:-1]])
|
467 |
-
else:
|
468 |
-
df['Calculated Return %'] = df['Signal'].map(signal_map)*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade
|
469 |
-
df['Return Per Trade'] = np.nan
|
470 |
-
g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade')
|
471 |
-
df['Return Per Trade'] = 1+lev*g['Return Per Trade'].values
|
472 |
-
|
473 |
-
df['Compounded Return'] = df['Return Per Trade'].cumprod()
|
474 |
-
df['New Balance'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df['Compounded Return']]
|
475 |
-
df['Balance used in Trade'] = np.concatenate([[principal_balance], df['New Balance'].values[:-1]])
|
476 |
-
df['Net P/L Per Trade'] = (df['Return Per Trade']-1)*df['Balance used in Trade']
|
477 |
-
df['Cumulative P/L'] = df['Net P/L Per Trade'].cumsum()
|
478 |
-
|
479 |
-
if bot_selections == "Cinnamon Toast" or bot_selections == "Cosmic Cupcake":
|
480 |
-
cum_pl = df.loc[df.drop('Drawdown %', axis=1).dropna().index[-1],'Cumulative P/L'] + principal_balance
|
481 |
-
#cum_sdp = sd_df.loc[sd_df.drop('Drawdown %', axis=1).dropna().index[-1],'Cumulative P/L (+)'] + principal_balance
|
482 |
-
#cum_sdm = sd_df.loc[sd_df.drop('Drawdown %', axis=1).dropna().index[-1],'Cumulative P/L (-)'] + principal_balance
|
483 |
-
else:
|
484 |
-
cum_pl = df.loc[df.dropna().index[-1],'Cumulative P/L'] + principal_balance
|
485 |
-
#cum_sdp = sd_df.loc[sd_df.dropna().index[-1],'Cumulative P/L (+)'] + principal_balance
|
486 |
-
#cum_sdm = sd_df.loc[sd_df.dropna().index[-1],'Cumulative P/L (-)'] + principal_balance
|
487 |
-
#sd = 2*.00026
|
488 |
-
#sd_df = get_sd_df(get_sd_df(df.copy(), sd, bot_selections, dca1, dca2, dca3, dca4, dca5, dca6, fees, lev, dollar_cap, principal_balance)
|
489 |
-
|
490 |
-
effective_return = 100*((cum_pl - principal_balance)/principal_balance)
|
491 |
-
|
492 |
-
st.header(f"{bot_selections} Results")
|
493 |
-
with st.container():
|
494 |
-
|
495 |
-
if len(bot_selections) > 1:
|
496 |
-
col1, col2 = st.columns(2)
|
497 |
-
with col1:
|
498 |
-
st.metric(
|
499 |
-
"Total Account Balance",
|
500 |
-
f"${cum_pl:.2f}",
|
501 |
-
f"{100*(cum_pl-principal_balance)/(principal_balance):.2f} %",
|
502 |
-
)
|
503 |
-
|
504 |
-
# with col2:
|
505 |
-
# st.write("95% of trades should fall within this 2 std. dev. range.")
|
506 |
-
# st.metric(
|
507 |
-
# "High Range (+ 2 std. dev.)",
|
508 |
-
# f"", #${cum_sdp:.2f}
|
509 |
-
# f"{100*(cum_sdp-principal_balance)/(principal_balance):.2f} %",
|
510 |
-
# )
|
511 |
-
# st.metric(
|
512 |
-
# "Low Range (- 2 std. dev.)",
|
513 |
-
# f"" ,#${cum_sdm:.2f}"
|
514 |
-
# f"{100*(cum_sdm-principal_balance)/(principal_balance):.2f} %",
|
515 |
-
# )
|
516 |
-
if bot_selections == "Cinnamon Toast" or bot_selections == "Cosmic Cupcake":
|
517 |
-
#st.line_chart(data=df.drop('Drawdown %', axis=1).dropna(), x='Exit Date', y='Cumulative P/L', use_container_width=True)
|
518 |
-
dfdata = df.drop('Drawdown %', axis=1).dropna()
|
519 |
-
#sd_df = sd_df.drop('Drawdown %', axis=1).dropna()
|
520 |
-
else:
|
521 |
-
#st.line_chart(data=df.dropna(), x='Exit Date', y='Cumulative P/L', use_container_width=True)
|
522 |
-
dfdata = df.dropna()
|
523 |
-
#sd_df = sd_df.dropna()
|
524 |
-
|
525 |
-
# Create figure
|
526 |
-
fig = go.Figure()
|
527 |
-
|
528 |
-
pyLogo = Image.open("logo.png")
|
529 |
-
|
530 |
-
# fig.add_traces(go.Scatter(x=sd_df['Exit Date'], y = sd_df['Cumulative P/L (+)'],line_shape='spline',
|
531 |
-
# line = dict(smoothing = 1.3, color='rgba(31, 119, 200,0)'), showlegend = False)
|
532 |
-
# )
|
533 |
-
|
534 |
-
# fig.add_traces(go.Scatter(x=sd_df['Exit Date'], y = sd_df['Cumulative P/L (-)'],
|
535 |
-
# line = dict(smoothing = 1.3, color='rgba(31, 119, 200,0)'), line_shape='spline',
|
536 |
-
# fill='tonexty',
|
537 |
-
# fillcolor = 'rgba(31, 119, 200,.2)', name = '+/- Standard Deviation')
|
538 |
-
# )
|
539 |
-
|
540 |
-
# Add trace
|
541 |
-
fig.add_trace(
|
542 |
-
go.Scatter(x=dfdata['Exit Date'], y=np.round(dfdata['Cumulative P/L'].values,2), line_shape='spline',
|
543 |
-
line = {'smoothing': 1.0, 'color' : 'rgba(31, 119, 200,.8)'},
|
544 |
-
name='Cumulative P/L')
|
545 |
-
)
|
546 |
-
buyhold = (principal_balance/dfdata['Buy Price'][dfdata.index[0]])*(dfdata['Buy Price']-dfdata['Buy Price'][dfdata.index[0]])
|
547 |
-
fig.add_trace(go.Scatter(x=dfdata['Exit Date'], y=np.round(buyhold.values,2), line_shape='spline',
|
548 |
-
line = {'smoothing': 1.0, 'color' :'red'}, name = 'Buy & Hold Return')
|
549 |
-
)
|
550 |
-
|
551 |
-
fig.add_layout_image(
|
552 |
-
dict(
|
553 |
-
source=pyLogo,
|
554 |
-
xref="paper",
|
555 |
-
yref="paper",
|
556 |
-
x = 0.05, #dfdata['Exit Date'].astype('int64').min() // 10**9,
|
557 |
-
y = .85, #dfdata['Cumulative P/L'].max(),
|
558 |
-
sizex= .9, #(dfdata['Exit Date'].astype('int64').max() - dfdata['Exit Date'].astype('int64').min()) // 10**9,
|
559 |
-
sizey= .9, #(dfdata['Cumulative P/L'].max() - dfdata['Cumulative P/L'].min()),
|
560 |
-
sizing="contain",
|
561 |
-
opacity=0.2,
|
562 |
-
layer = "below")
|
563 |
-
)
|
564 |
-
|
565 |
-
#style layout
|
566 |
-
fig.update_layout(
|
567 |
-
height = 600,
|
568 |
-
xaxis=dict(
|
569 |
-
title="Exit Date",
|
570 |
-
tickmode='array',
|
571 |
-
),
|
572 |
-
yaxis=dict(
|
573 |
-
title="Cumulative P/L"
|
574 |
-
) )
|
575 |
-
|
576 |
-
st.plotly_chart(fig, theme=None, use_container_width=True,height=600)
|
577 |
-
st.write()
|
578 |
-
df['Per Trade Return Rate'] = df['Return Per Trade']-1
|
579 |
-
|
580 |
-
totals = pd.DataFrame([], columns = ['# of Trades', 'Wins', 'Losses', 'Win Rate', 'Profit Factor'])
|
581 |
-
if bot_selections == "Cinnamon Toast" or bot_selections == "Cosmic Cupcake":
|
582 |
-
data = get_hist_info(df.drop('Drawdown %', axis=1).dropna(), principal_balance,'Per Trade Return Rate')
|
583 |
-
else:
|
584 |
-
data = get_hist_info(df.dropna(), principal_balance,'Per Trade Return Rate')
|
585 |
-
totals.loc[len(totals)] = list(i for i in data)
|
586 |
-
|
587 |
-
totals['Cum. P/L'] = cum_pl-principal_balance
|
588 |
-
totals['Cum. P/L (%)'] = 100*(cum_pl-principal_balance)/principal_balance
|
589 |
-
|
590 |
-
if df.empty:
|
591 |
-
st.error("Oops! None of the data provided matches your selection(s). Please try again.")
|
592 |
-
else:
|
593 |
-
with st.container():
|
594 |
-
for row in totals.itertuples():
|
595 |
-
col1, col2, col3, col4= st.columns(4)
|
596 |
-
c1, c2, c3, c4 = st.columns(4)
|
597 |
-
with col1:
|
598 |
-
st.metric(
|
599 |
-
"Total Trades",
|
600 |
-
f"{row._1:.0f}",
|
601 |
-
)
|
602 |
-
with c1:
|
603 |
-
st.metric(
|
604 |
-
"Profit Factor",
|
605 |
-
f"{row._5:.2f}",
|
606 |
-
)
|
607 |
-
with col2:
|
608 |
-
st.metric(
|
609 |
-
"Wins",
|
610 |
-
f"{row.Wins:.0f}",
|
611 |
-
)
|
612 |
-
with c2:
|
613 |
-
st.metric(
|
614 |
-
"Cumulative P/L",
|
615 |
-
f"${row._6:.2f}",
|
616 |
-
f"{row._7:.2f} %",
|
617 |
-
)
|
618 |
-
with col3:
|
619 |
-
st.metric(
|
620 |
-
"Losses",
|
621 |
-
f"{row.Losses:.0f}",
|
622 |
-
)
|
623 |
-
with c3:
|
624 |
-
st.metric(
|
625 |
-
"Rolling 7 Days",
|
626 |
-
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
|
627 |
-
f"{get_rolling_stats(df,lev, otimeheader, 7):.2f}%",
|
628 |
-
)
|
629 |
-
st.metric(
|
630 |
-
"Rolling 30 Days",
|
631 |
-
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
|
632 |
-
f"{get_rolling_stats(df,lev, otimeheader, 30):.2f}%",
|
633 |
-
)
|
634 |
-
|
635 |
-
with col4:
|
636 |
-
st.metric(
|
637 |
-
"Win Rate",
|
638 |
-
f"{row._4:.1f}%",
|
639 |
-
)
|
640 |
-
with c4:
|
641 |
-
st.metric(
|
642 |
-
"Rolling 90 Days",
|
643 |
-
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
|
644 |
-
f"{get_rolling_stats(df,lev, otimeheader, 90):.2f}%",
|
645 |
-
)
|
646 |
-
st.metric(
|
647 |
-
"Rolling 180 Days",
|
648 |
-
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
|
649 |
-
f"{get_rolling_stats(df,lev, otimeheader, 180):.2f}%",
|
650 |
-
)
|
651 |
-
|
652 |
-
if bot_selections == "Cinnamon Toast":
|
653 |
-
if submitted:
|
654 |
-
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
|
655 |
-
'Sell Price' : 'max',
|
656 |
-
'Net P/L Per Trade': 'mean',
|
657 |
-
'Calculated Return %' : lambda x: np.round(100*lev*x.sum(),2),
|
658 |
-
'DCA': lambda x: int(np.floor(x.max()))})
|
659 |
-
grouped_df.index = range(1, len(grouped_df)+1)
|
660 |
-
grouped_df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price',
|
661 |
-
'Net P/L Per Trade':'Net P/L',
|
662 |
-
'Calculated Return %':'P/L %'}, inplace=True)
|
663 |
-
else:
|
664 |
-
dca_map = {1: 25/100, 2: 25/100, 3: 25/100, 4: 25/100, 1.1: 50/100, 2.1: 50/100}
|
665 |
-
df['DCA %'] = df['DCA'].map(dca_map)
|
666 |
-
df['Calculated Return %'] = (df['DCA %'])*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade
|
667 |
-
|
668 |
-
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
|
669 |
-
'Sell Price' : 'max',
|
670 |
-
'P/L per token': 'mean',
|
671 |
-
'Calculated Return %' : lambda x: np.round(100*x.sum(),2),
|
672 |
-
'DCA': lambda x: int(np.floor(x.max()))})
|
673 |
-
grouped_df.index = range(1, len(grouped_df)+1)
|
674 |
-
grouped_df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price',
|
675 |
-
'Calculated Return %':'P/L %',
|
676 |
-
'P/L per token':'Net P/L'}, inplace=True)
|
677 |
-
|
678 |
-
else:
|
679 |
-
if submitted:
|
680 |
-
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
|
681 |
-
'Sell Price' : 'max',
|
682 |
-
'Net P/L Per Trade': 'mean',
|
683 |
-
'Calculated Return %' : lambda x: np.round(100*lev*x.sum(),2)})
|
684 |
-
grouped_df.index = range(1, len(grouped_df)+1)
|
685 |
-
grouped_df.rename(columns={'Buy Price':'Avg. Buy Price',
|
686 |
-
'Net P/L Per Trade':'Net P/L',
|
687 |
-
'Calculated Return %':'P/L %'}, inplace=True)
|
688 |
-
else:
|
689 |
-
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
|
690 |
-
'Sell Price' : 'max',
|
691 |
-
'P/L per token': 'mean',
|
692 |
-
'P/L %':'mean'})
|
693 |
-
grouped_df.index = range(1, len(grouped_df)+1)
|
694 |
-
grouped_df.rename(columns={'Buy Price':'Avg. Buy Price',
|
695 |
-
'P/L per token':'Net P/L'}, inplace=True)
|
696 |
-
st.subheader("Trade Logs")
|
697 |
-
grouped_df['Entry Date'] = pd.to_datetime(grouped_df['Entry Date'])
|
698 |
-
grouped_df['Exit Date'] = pd.to_datetime(grouped_df['Exit Date'])
|
699 |
-
if bot_selections == "Cosmic Cupcake" or bot_selections == "CT Toasted":
|
700 |
-
coding = cc_coding if bot_selections == "Cosmic Cupcake" else ctt_coding
|
701 |
-
st.dataframe(grouped_df.style.format({'Entry Date':'{:%m-%d-%Y %H:%M:%S}','Exit Date':'{:%m-%d-%Y %H:%M:%S}','Avg. Buy Price': '${:.2f}', 'Sell Price': '${:.2f}', 'Net P/L':'${:.2f}', 'P/L %':'{:.2f}%'})\
|
702 |
-
.apply(coding, axis=1)\
|
703 |
-
.applymap(my_style,subset=['Net P/L'])\
|
704 |
-
.applymap(my_style,subset=['P/L %']), use_container_width=True)
|
705 |
-
new_title = '<div style="text-align: right;"><span style="background-color:lightgrey;"> </span> Not Live Traded</div>'
|
706 |
-
st.markdown(new_title, unsafe_allow_html=True)
|
707 |
-
else:
|
708 |
-
st.dataframe(grouped_df.style.format({'Entry Date':'{:%m-%d-%Y %H:%M:%S}','Exit Date':'{:%m-%d-%Y %H:%M:%S}','Avg. Buy Price': '${:.2f}', 'Sell Price': '${:.2f}', 'Net P/L':'${:.2f}', 'P/L %':'{:.2f}%'})\
|
709 |
-
.applymap(my_style,subset=['Net P/L'])\
|
710 |
-
.applymap(my_style,subset=['P/L %']), use_container_width=True)
|
711 |
-
|
712 |
-
# st.subheader("Checking Status")
|
713 |
-
# if submitted:
|
714 |
-
# st.dataframe(sd_df)
|
715 |
-
|
716 |
-
if __name__ == "__main__":
|
717 |
-
st.set_page_config(
|
718 |
-
"Trading Bot Dashboard",
|
719 |
-
layout="wide",
|
720 |
-
)
|
721 |
-
runapp()
|
722 |
-
# -
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
old_app.py
ADDED
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ---
|
2 |
+
# jupyter:
|
3 |
+
# jupytext:
|
4 |
+
# text_representation:
|
5 |
+
# extension: .py
|
6 |
+
# format_name: light
|
7 |
+
# format_version: '1.5'
|
8 |
+
# jupytext_version: 1.14.2
|
9 |
+
# kernelspec:
|
10 |
+
# display_name: Python [conda env:bbytes] *
|
11 |
+
# language: python
|
12 |
+
# name: conda-env-bbytes-py
|
13 |
+
# ---
|
14 |
+
|
15 |
+
# +
|
16 |
+
import csv
|
17 |
+
import pandas as pd
|
18 |
+
from datetime import datetime, timedelta
|
19 |
+
import numpy as np
|
20 |
+
import datetime as dt
|
21 |
+
import matplotlib.pyplot as plt
|
22 |
+
from pathlib import Path
|
23 |
+
|
24 |
+
import streamlit as st
|
25 |
+
import plotly.express as px
|
26 |
+
import altair as alt
|
27 |
+
import dateutil.parser
|
28 |
+
import copy
|
29 |
+
|
30 |
+
|
31 |
+
# +
|
32 |
+
@st.experimental_memo
|
33 |
+
def get_hist_info(df_coin, principal_balance,plheader):
|
34 |
+
numtrades = int(len(df_coin))
|
35 |
+
numwin = int(sum(df_coin[plheader] > 0))
|
36 |
+
numloss = int(sum(df_coin[plheader] < 0))
|
37 |
+
winrate = int(np.round(100*numwin/numtrades,2))
|
38 |
+
|
39 |
+
grosswin = sum(df_coin[df_coin[plheader] > 0][plheader])
|
40 |
+
grossloss = sum(df_coin[df_coin[plheader] < 0][plheader])
|
41 |
+
if grossloss !=0:
|
42 |
+
pfactor = -1*np.round(grosswin/grossloss,2)
|
43 |
+
else:
|
44 |
+
pfactor = np.nan
|
45 |
+
return numtrades, numwin, numloss, winrate, pfactor
|
46 |
+
@st.experimental_memo
|
47 |
+
def get_rolling_stats(df, lev, otimeheader, days):
|
48 |
+
max_roll = (df[otimeheader].max() - df[otimeheader].min()).days
|
49 |
+
|
50 |
+
if max_roll >= days:
|
51 |
+
rollend = df[otimeheader].max()-timedelta(days=days)
|
52 |
+
rolling_df = df[df[otimeheader] >= rollend]
|
53 |
+
|
54 |
+
if len(rolling_df) > 0:
|
55 |
+
rolling_perc = rolling_df['Return Per Trade'].dropna().cumprod().values[-1]-1
|
56 |
+
else:
|
57 |
+
rolling_perc = np.nan
|
58 |
+
else:
|
59 |
+
rolling_perc = np.nan
|
60 |
+
return 100*rolling_perc
|
61 |
+
|
62 |
+
@st.experimental_memo
|
63 |
+
def filt_df(df, cheader, symbol_selections):
|
64 |
+
"""
|
65 |
+
Inputs: df (pd.DataFrame), cheader (str) and symbol_selections (list[str]).
|
66 |
+
|
67 |
+
Returns a filtered pd.DataFrame containing only data that matches symbol_selections (list[str])
|
68 |
+
from df[cheader].
|
69 |
+
"""
|
70 |
+
|
71 |
+
df = df.copy()
|
72 |
+
df = df[df[cheader].isin(symbol_selections)]
|
73 |
+
|
74 |
+
return df
|
75 |
+
|
76 |
+
@st.experimental_memo
|
77 |
+
def my_style(v, props=''):
|
78 |
+
props = 'color:red' if v < 0 else 'color:green'
|
79 |
+
return props
|
80 |
+
|
81 |
+
@st.cache(ttl=24*3600, allow_output_mutation=True)
|
82 |
+
def load_data(filename, otimeheader, fmat):
|
83 |
+
df = pd.read_csv(open(filename,'r'), sep='\t') # so as not to mutate cached value
|
84 |
+
df.columns = ['Trade','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %', 'Drawdown %']
|
85 |
+
df.insert(1, 'Signal', ['Long']*len(df))
|
86 |
+
|
87 |
+
df['Buy Price'] = df['Buy Price'].str.replace('$', '', regex=True)
|
88 |
+
df['Sell Price'] = df['Sell Price'].str.replace('$', '', regex=True)
|
89 |
+
df['Buy Price'] = df['Buy Price'].str.replace(',', '', regex=True)
|
90 |
+
df['Sell Price'] = df['Sell Price'].str.replace(',', '', regex=True)
|
91 |
+
df['P/L per token'] = df['P/L per token'].str.replace('$', '', regex=True)
|
92 |
+
df['P/L %'] = df['P/L %'].str.replace('%', '', regex=True)
|
93 |
+
|
94 |
+
df['Buy Price'] = pd.to_numeric(df['Buy Price'])
|
95 |
+
df['Sell Price'] = pd.to_numeric(df['Sell Price'])
|
96 |
+
df['P/L per token'] = pd.to_numeric(df['P/L per token'])
|
97 |
+
df['P/L %'] = pd.to_numeric(df['P/L %'])
|
98 |
+
|
99 |
+
dateheader = 'Date'
|
100 |
+
theader = 'Time'
|
101 |
+
|
102 |
+
df[dateheader] = [tradetimes.split(" ")[0] for tradetimes in df[otimeheader].values]
|
103 |
+
df[theader] = [tradetimes.split(" ")[1] for tradetimes in df[otimeheader].values]
|
104 |
+
|
105 |
+
df[otimeheader]= [dateutil.parser.parse(date+' '+time)
|
106 |
+
for date,time in zip(df[dateheader],df[theader])]
|
107 |
+
|
108 |
+
df[otimeheader] = pd.to_datetime(df[otimeheader])
|
109 |
+
df['Exit Date'] = pd.to_datetime(df['Exit Date'])
|
110 |
+
df.sort_values(by=otimeheader, inplace=True)
|
111 |
+
|
112 |
+
df[dateheader] = [dateutil.parser.parse(date).date() for date in df[dateheader]]
|
113 |
+
df[theader] = [dateutil.parser.parse(time).time() for time in df[theader]]
|
114 |
+
df['Trade'] = df.index + 1 #reindex
|
115 |
+
|
116 |
+
df['DCA'] = np.nan
|
117 |
+
|
118 |
+
for exit in pd.unique(df['Exit Date']):
|
119 |
+
df_exit = df[df['Exit Date']==exit]
|
120 |
+
if dateutil.parser.parse(str(exit)) < dateutil.parser.parse('2023-02-07 13:00:00'):
|
121 |
+
for i in range(len(df_exit)):
|
122 |
+
ind = df_exit.index[i]
|
123 |
+
df.loc[ind,'DCA'] = i+1
|
124 |
+
|
125 |
+
else:
|
126 |
+
for i in range(len(df_exit)):
|
127 |
+
ind = df_exit.index[i]
|
128 |
+
df.loc[ind,'DCA'] = i+1.1
|
129 |
+
return df
|
130 |
+
|
131 |
+
def runapp():
|
132 |
+
bot_selections = "Cinnamon Toast"
|
133 |
+
otimeheader = 'Exit Date'
|
134 |
+
fmat = '%Y-%m-%d %H:%M:%S'
|
135 |
+
dollar_cap = 100000.00
|
136 |
+
fees = .075/100
|
137 |
+
st.header(f"{bot_selections} Performance Dashboard :bread: :moneybag:")
|
138 |
+
st.write("Welcome to the Trading Bot Dashboard by BreadBytes! You can use this dashboard to track " +
|
139 |
+
"the performance of our trading bots.")
|
140 |
+
# st.sidebar.header("FAQ")
|
141 |
+
|
142 |
+
# with st.sidebar.subheader("FAQ"):
|
143 |
+
# st.write(Path("FAQ_README.md").read_text())
|
144 |
+
st.subheader("Choose your settings:")
|
145 |
+
no_errors = True
|
146 |
+
|
147 |
+
data = load_data("CT-Trade-Log.csv",otimeheader, fmat)
|
148 |
+
df = data.copy(deep=True)
|
149 |
+
|
150 |
+
dateheader = 'Date'
|
151 |
+
theader = 'Time'
|
152 |
+
|
153 |
+
with st.form("user input", ):
|
154 |
+
if no_errors:
|
155 |
+
with st.container():
|
156 |
+
col1, col2 = st.columns(2)
|
157 |
+
with col1:
|
158 |
+
try:
|
159 |
+
startdate = st.date_input("Start Date", value=pd.to_datetime(df[otimeheader]).min())
|
160 |
+
except:
|
161 |
+
st.error("Please select your exchange or upload a supported trade log file.")
|
162 |
+
no_errors = False
|
163 |
+
with col2:
|
164 |
+
try:
|
165 |
+
enddate = st.date_input("End Date", value=datetime.today())
|
166 |
+
except:
|
167 |
+
st.error("Please select your exchange or upload a supported trade log file.")
|
168 |
+
no_errors = False
|
169 |
+
#st.sidebar.subheader("Customize your Dashboard")
|
170 |
+
|
171 |
+
if no_errors and (enddate < startdate):
|
172 |
+
st.error("End Date must be later than Start date. Please try again.")
|
173 |
+
no_errors = False
|
174 |
+
with st.container():
|
175 |
+
col1,col2 = st.columns(2)
|
176 |
+
with col2:
|
177 |
+
lev = st.number_input('Leverage', min_value=1, value=1, max_value= 5, step=1)
|
178 |
+
with col1:
|
179 |
+
principal_balance = st.number_input('Starting Balance', min_value=0.00, value=1000.00, max_value= dollar_cap, step=.01)
|
180 |
+
st.write("Choose your DCA setup (for trades before 02/07/2023)")
|
181 |
+
with st.container():
|
182 |
+
col1, col2, col3, col4 = st.columns(4)
|
183 |
+
with col1:
|
184 |
+
dca1 = st.number_input('DCA 1 Allocation', min_value=0, value=25, max_value= 100, step=1)
|
185 |
+
with col2:
|
186 |
+
dca2 = st.number_input('DCA 2 Allocation', min_value=0, value=25, max_value= 100, step=1)
|
187 |
+
with col3:
|
188 |
+
dca3 = st.number_input('DCA 3 Allocation', min_value=0, value=25, max_value= 100, step=1)
|
189 |
+
with col4:
|
190 |
+
dca4 = st.number_input('DCA 4 Allocation', min_value=0, value=25, max_value= 100, step=1)
|
191 |
+
st.write("Choose your DCA setup (for trades on or after 02/07/2023)")
|
192 |
+
with st.container():
|
193 |
+
col1, col2 = st.columns(2)
|
194 |
+
with col1:
|
195 |
+
dca5 = st.number_input('DCA 1 Allocation', min_value=0, value=50, max_value= 100, step=1)
|
196 |
+
with col2:
|
197 |
+
dca6 = st.number_input('DCA 2 Allocation', min_value=0, value=50, max_value= 100, step=1)
|
198 |
+
|
199 |
+
|
200 |
+
#hack way to get button centered
|
201 |
+
c = st.columns(9)
|
202 |
+
with c[4]:
|
203 |
+
submitted = st.form_submit_button("Get Cookin'!")
|
204 |
+
|
205 |
+
signal_map = {'Long': 1, 'Short':-1} # 1 for long #-1 for short
|
206 |
+
dca_map = {1: 25/100, 2: 25/100, 3: 25/100, 4: 25/100, 1.1: 50/100, 2.1: 50/100}
|
207 |
+
df['DCA %'] = df['DCA'].map(dca_map)
|
208 |
+
df['Calculated Return %'] = (df['DCA %'])*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade
|
209 |
+
|
210 |
+
if submitted and principal_balance * lev > dollar_cap:
|
211 |
+
lev = np.floor(dollar_cap/principal_balance)
|
212 |
+
st.error(f"WARNING: (Starting Balance)*(Leverage) exceeds the ${dollar_cap} limit. Using maximum available leverage of {lev}")
|
213 |
+
|
214 |
+
if submitted and no_errors:
|
215 |
+
df = df[(df[dateheader] >= startdate) & (df[dateheader] <= enddate)]
|
216 |
+
|
217 |
+
if len(df) == 0:
|
218 |
+
st.error("There are no available trades matching your selections. Please try again!")
|
219 |
+
no_errors = False
|
220 |
+
if no_errors:
|
221 |
+
|
222 |
+
dca_map = {1: dca1/100, 2: dca2/100, 3: dca3/100, 4: dca4/100, 1.1: dca5/100, 2.1: dca6/100}
|
223 |
+
df['DCA %'] = df['DCA'].map(dca_map)
|
224 |
+
df['Calculated Return %'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade
|
225 |
+
df['DCA'] = np.floor(df['DCA'].values)
|
226 |
+
|
227 |
+
df['Return Per Trade'] = np.nan
|
228 |
+
df['Balance used in Trade'] = np.nan
|
229 |
+
df['New Balance'] = np.nan
|
230 |
+
|
231 |
+
g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade')
|
232 |
+
|
233 |
+
df.loc[df['DCA']==1.0,'Return Per Trade'] = 1+lev*g['Return Per Trade'].values
|
234 |
+
|
235 |
+
df['Compounded Return'] = df['Return Per Trade'].cumprod()
|
236 |
+
df.loc[df['DCA']==1.0,'New Balance'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df.loc[df['DCA']==1.0,'Compounded Return']]
|
237 |
+
df.loc[df['DCA']==1.0,'Balance used in Trade'] = np.concatenate([[principal_balance], df.loc[df['DCA']==1.0,'New Balance'].values[:-1]])
|
238 |
+
df['Net P/L Per Trade'] = (df['Return Per Trade']-1)*df['Balance used in Trade']
|
239 |
+
df['Cumulative P/L'] = df['Net P/L Per Trade'].cumsum()
|
240 |
+
cum_pl = df.loc[df.dropna().index[-1],'Cumulative P/L'] + principal_balance
|
241 |
+
|
242 |
+
effective_return = 100*((cum_pl - principal_balance)/principal_balance)
|
243 |
+
|
244 |
+
st.header(f"{bot_selections} Results")
|
245 |
+
if len(bot_selections) > 1:
|
246 |
+
st.metric(
|
247 |
+
"Total Account Balance",
|
248 |
+
f"${cum_pl:.2f}",
|
249 |
+
f"{100*(cum_pl-principal_balance)/(principal_balance):.2f} %",
|
250 |
+
)
|
251 |
+
|
252 |
+
st.line_chart(data=df.dropna(), x='Exit Date', y='Cumulative P/L', use_container_width=True)
|
253 |
+
|
254 |
+
df['Per Trade Return Rate'] = df['Return Per Trade']-1
|
255 |
+
|
256 |
+
totals = pd.DataFrame([], columns = ['# of Trades', 'Wins', 'Losses', 'Win Rate', 'Profit Factor'])
|
257 |
+
data = get_hist_info(df.dropna(), principal_balance,'Per Trade Return Rate')
|
258 |
+
totals.loc[len(totals)] = list(i for i in data)
|
259 |
+
|
260 |
+
totals['Cum. P/L'] = cum_pl-principal_balance
|
261 |
+
totals['Cum. P/L (%)'] = 100*(cum_pl-principal_balance)/principal_balance
|
262 |
+
#results_df['Avg. P/L'] = (cum_pl-principal_balance)/results_df['# of Trades'].values[0]
|
263 |
+
#results_df['Avg. P/L (%)'] = 100*results_df['Avg. P/L'].values[0]/principal_balance
|
264 |
+
|
265 |
+
if df.empty:
|
266 |
+
st.error("Oops! None of the data provided matches your selection(s). Please try again.")
|
267 |
+
else:
|
268 |
+
#st.dataframe(totals.style.format({'# of Trades': '{:.0f}','Wins': '{:.0f}','Losses': '{:.0f}','Win Rate': '{:.2f}%','Profit Factor' : '{:.2f}', 'Avg. P/L (%)': '{:.2f}%', 'Cum. P/L (%)': '{:.2f}%', 'Cum. P/L': '{:.2f}', 'Avg. P/L': '{:.2f}'})
|
269 |
+
#.text_gradient(subset=['Win Rate'],cmap="RdYlGn", vmin = 0, vmax = 100)\
|
270 |
+
#.text_gradient(subset=['Profit Factor'],cmap="RdYlGn", vmin = 0, vmax = 2), use_container_width=True)
|
271 |
+
for row in totals.itertuples():
|
272 |
+
col1, col2, col3, col4 = st.columns(4)
|
273 |
+
c1, c2, c3, c4 = st.columns(4)
|
274 |
+
with col1:
|
275 |
+
st.metric(
|
276 |
+
"Total Trades",
|
277 |
+
f"{row._1:.0f}",
|
278 |
+
)
|
279 |
+
with c1:
|
280 |
+
st.metric(
|
281 |
+
"Profit Factor",
|
282 |
+
f"{row._5:.2f}",
|
283 |
+
)
|
284 |
+
with col2:
|
285 |
+
st.metric(
|
286 |
+
"Wins",
|
287 |
+
f"{row.Wins:.0f}",
|
288 |
+
)
|
289 |
+
with c2:
|
290 |
+
st.metric(
|
291 |
+
"Cumulative P/L",
|
292 |
+
f"${row._6:.2f}",
|
293 |
+
f"{row._7:.2f} %",
|
294 |
+
)
|
295 |
+
with col3:
|
296 |
+
st.metric(
|
297 |
+
"Losses",
|
298 |
+
f"{row.Losses:.0f}",
|
299 |
+
)
|
300 |
+
with c3:
|
301 |
+
st.metric(
|
302 |
+
"Rolling 7 Days",
|
303 |
+
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
|
304 |
+
f"{get_rolling_stats(df,lev, otimeheader,7):.2f}%",
|
305 |
+
)
|
306 |
+
st.metric(
|
307 |
+
"Rolling 30 Days",
|
308 |
+
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
|
309 |
+
f"{get_rolling_stats(df,lev, otimeheader, 30):.2f}%",
|
310 |
+
)
|
311 |
+
|
312 |
+
with col4:
|
313 |
+
st.metric(
|
314 |
+
"Win Rate",
|
315 |
+
f"{row._4:.1f}%",
|
316 |
+
)
|
317 |
+
with c4:
|
318 |
+
st.metric(
|
319 |
+
"Rolling 90 Days",
|
320 |
+
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
|
321 |
+
f"{get_rolling_stats(df,lev, otimeheader,90):.2f}%",
|
322 |
+
)
|
323 |
+
st.metric(
|
324 |
+
"Rolling 180 Days",
|
325 |
+
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
|
326 |
+
f"{get_rolling_stats(df,lev, otimeheader, 180):.2f}%",
|
327 |
+
)
|
328 |
+
if submitted:
|
329 |
+
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
|
330 |
+
'Sell Price' : 'max',
|
331 |
+
'Net P/L Per Trade': 'mean',
|
332 |
+
'Calculated Return %' : lambda x: np.round(100*lev*x.sum(),2),
|
333 |
+
'DCA': lambda x: int(np.floor(x.max()))})
|
334 |
+
grouped_df.index = range(1, len(grouped_df)+1)
|
335 |
+
grouped_df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price',
|
336 |
+
'Net P/L Per Trade':'Net P/L',
|
337 |
+
'Calculated Return %':'P/L %'}, inplace=True)
|
338 |
+
else:
|
339 |
+
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
|
340 |
+
'Sell Price' : 'max',
|
341 |
+
'P/L per token': 'mean',
|
342 |
+
'Calculated Return %' : lambda x: np.round(100*x.sum(),2),
|
343 |
+
'DCA': lambda x: int(np.floor(x.max()))})
|
344 |
+
grouped_df.index = range(1, len(grouped_df)+1)
|
345 |
+
grouped_df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price',
|
346 |
+
'Calculated Return %':'P/L %',
|
347 |
+
'P/L per token':'Net P/L'}, inplace=True)
|
348 |
+
|
349 |
+
st.subheader("Trade Logs")
|
350 |
+
grouped_df['Entry Date'] = pd.to_datetime(grouped_df['Entry Date'])
|
351 |
+
grouped_df['Exit Date'] = pd.to_datetime(grouped_df['Exit Date'])
|
352 |
+
st.dataframe(grouped_df.style.format({'Entry Date':'{:%m-%d-%Y %H:%M:%S}','Exit Date':'{:%m-%d-%Y %H:%M:%S}','Avg. Buy Price': '${:.2f}', 'Sell Price': '${:.2f}','# of DCAs':'{:.0f}', 'Net P/L':'${:.2f}', 'P/L %' :'{:.2f}%'})\
|
353 |
+
.applymap(my_style,subset=['Net P/L'])\
|
354 |
+
.applymap(my_style,subset=['P/L %']), use_container_width=True)
|
355 |
+
|
356 |
+
if __name__ == "__main__":
|
357 |
+
st.set_page_config(
|
358 |
+
"Trading Bot Dashboard",
|
359 |
+
layout="wide",
|
360 |
+
)
|
361 |
+
runapp()
|
362 |
+
# -
|
363 |
+
|
364 |
+
|