moslem-bot-be / app.py
Bofandra's picture
Update app.py
e706bd8 verified
raw
history blame
5.73 kB
import gradio as gr
from sentence_transformers import SentenceTransformer
from huggingface_hub import InferenceClient
import pandas as pd
import torch
import math
import httpcore
import pickle
import time
setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
model = SentenceTransformer('intfloat/multilingual-e5-large-instruct')
def get_detailed_instruct(task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery: {query}'
def respond(
message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": "You are a sunni moslem bot that always give answer based on quran, hadith, and the companions of prophet Muhammad!"}]
#make a moslem bot
messages.append({"role": "user", "content": "I want you to answer strictly based on quran and hadith"})
messages.append({"role": "assistant", "content": "I'd be happy to help! Please go ahead and provide the sentence you'd like me to analyze. Please specify whether you're referencing a particular verse or hadith (Prophetic tradition) from the Quran or Hadith, or if you're asking me to analyze a general statement."})
#adding fatwa references
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
selected_references = torch.load('selected_references.sav', map_location=torch.device(device))
encoded_questions = torch.load('encoded_questions.sav', map_location=torch.device(device))
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = [
get_detailed_instruct(task, message)
]
print("start\n")
print(time.time())
query_embeddings = model.encode(queries, convert_to_tensor=True, normalize_embeddings=True)
scores = (query_embeddings @ encoded_questions.T) * 100
selected_references['similarity'] = scores.tolist()[0]
sorted_references = selected_references.sort_values(by='similarity', ascending=False)
sorted_references = sorted_references.iloc[:1]
sorted_references = sorted_references.sort_values(by='similarity', ascending=True)
print(sorted_references.shape[0])
print(sorted_references['similarity'].tolist())
print("sorted references\n")
print(time.time())
from googletrans import Translator
translator = Translator()
for index, row in sorted_references.iterrows():
if(type(row["user"]) is str and type(row['assistant']) is str):
try:
translator = Translator()
print(index)
print(f'{row["user"]}')
translated = translator.translate(f'{row["user"]}', src='ar', dest='en')
print(translated)
user = translated.text
print(user)
assistant = translator.translate(row['assistant']).text
messages.append({"role": "user", "content":user })
messages.append({"role": "assistant", "content": assistant})
except Exception as error:
print("1. An error occurred:", error)
print("adding fatwa references exception occurred")
print("append references\n")
print(time.time())
#adding more references
df = pd.read_csv("moslem-bot-reference.csv", sep='|')
for index, row in df.iterrows():
messages.append({"role": "user", "content": row['user']})
messages.append({"role": "assistant", "content": row['assistant']})
#latest user question
translator = Translator()
en_message = ""
message_language = "en"
print("===message===")
print(message)
print("============")
try:
translator = Translator()
print(translator.detect(message))
message_language = translator.detect(message).lang
print(message_language)
print(translator.translate(message))
en_message = translator.translate(message).text
messages.append({"role": "user", "content": en_message})
except Exception as error:
messages.append({"role": "user", "content": message})
print("An error occurred:", error)
print("en_message exception occurred")
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
translated_response = translator.translate(response, src='en', dest=message_language).text
if(len(translated_response)>0):
yield translated_response
else:
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.Interface(
respond,
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
inputs="textbox",
outputs="textbox",
cache_examples="lazy",
examples=[
["Why is men created?"],
["Please tell me about superstition!"],
["How moses defeat pharaoh?"],
],
)
if __name__ == "__main__":
demo.launch()