Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -1,59 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
|
|
|
|
3 |
from datetime import datetime
|
|
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
from pynvml import *
|
6 |
nvmlInit()
|
7 |
gpu_h = nvmlDeviceGetHandleByIndex(0)
|
8 |
-
|
|
|
|
|
9 |
gen_limit = 500
|
10 |
gen_limit_long = 800
|
11 |
-
|
12 |
|
13 |
-
|
14 |
-
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
# model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16')
|
22 |
|
23 |
-
|
24 |
-
|
25 |
|
26 |
-
args = model.args
|
27 |
-
eng_name = 'rwkv-x060-eng_single_round_qa-7B-20240516-ctx2048'
|
28 |
eng_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{eng_name}.pth")
|
29 |
-
state_eng_raw = torch.load(eng_file)
|
30 |
-
state_eng = [None] * args.n_layer * 3
|
31 |
-
|
32 |
-
chn_name = 'rwkv-x060-chn_single_round_qa-7B-20240516-ctx2048'
|
33 |
chn_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{chn_name}.pth")
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
wyw_name = 'rwkv-x060-chn_文言文和古典名著_single_round_qa-7B-20240601-ctx2048'
|
38 |
-
wyw_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{wyw_name}.pth")
|
39 |
-
state_wyw_raw = torch.load(wyw_file)
|
40 |
-
state_wyw = [None] * args.n_layer * 3
|
41 |
|
|
|
|
|
42 |
for i in range(args.n_layer):
|
43 |
-
dd =
|
44 |
dev = dd.device
|
45 |
atype = dd.atype
|
46 |
state_eng[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
47 |
-
state_eng[i*3+1] = state_eng_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
|
48 |
-
state_eng[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
49 |
-
|
50 |
state_chn[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
|
|
51 |
state_chn[i*3+1] = state_chn_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
|
|
|
52 |
state_chn[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
57 |
|
58 |
def generate_prompt(instruction, input=""):
|
59 |
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
@@ -68,15 +78,13 @@ def qa_prompt(instruction):
|
|
68 |
instruction = re.sub(r'\n+', '\n', instruction)
|
69 |
return f"User: {instruction}\n\nAssistant:"""
|
70 |
|
71 |
-
penalty_decay = 0.996
|
72 |
-
|
73 |
def evaluate(
|
74 |
ctx,
|
75 |
-
token_count=
|
76 |
temperature=1.0,
|
77 |
-
top_p=0.
|
78 |
-
presencePenalty = 0.
|
79 |
-
countPenalty = 0.
|
80 |
):
|
81 |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
82 |
alpha_frequency = countPenalty,
|
@@ -90,22 +98,30 @@ def evaluate(
|
|
90 |
occurrence = {}
|
91 |
state = None
|
92 |
for i in range(int(token_count)):
|
93 |
-
|
|
|
94 |
for n in occurrence:
|
95 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
96 |
|
97 |
-
token =
|
98 |
if token in args.token_stop:
|
99 |
break
|
100 |
all_tokens += [token]
|
101 |
for xxx in occurrence:
|
102 |
occurrence[xxx] *= penalty_decay
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
if token not in occurrence:
|
104 |
-
occurrence[token] =
|
105 |
else:
|
106 |
-
occurrence[token] +=
|
107 |
-
|
108 |
-
tmp =
|
109 |
if '\ufffd' not in tmp:
|
110 |
out_str += tmp
|
111 |
yield out_str.strip()
|
@@ -113,7 +129,7 @@ def evaluate(
|
|
113 |
|
114 |
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
115 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
116 |
-
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
117 |
del out
|
118 |
del state
|
119 |
gc.collect()
|
@@ -122,11 +138,11 @@ def evaluate(
|
|
122 |
|
123 |
def evaluate_eng(
|
124 |
ctx,
|
125 |
-
token_count=
|
126 |
temperature=1.0,
|
127 |
-
top_p=0.
|
128 |
-
presencePenalty=0.
|
129 |
-
countPenalty=0.
|
130 |
):
|
131 |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
132 |
alpha_frequency = countPenalty,
|
@@ -140,22 +156,30 @@ def evaluate_eng(
|
|
140 |
occurrence = {}
|
141 |
state = copy.deepcopy(state_eng)
|
142 |
for i in range(int(token_count)):
|
143 |
-
|
|
|
144 |
for n in occurrence:
|
145 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
146 |
|
147 |
-
token =
|
148 |
if token in args.token_stop:
|
149 |
break
|
150 |
all_tokens += [token]
|
151 |
for xxx in occurrence:
|
152 |
occurrence[xxx] *= penalty_decay
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
if token not in occurrence:
|
154 |
-
occurrence[token] =
|
155 |
else:
|
156 |
-
occurrence[token] +=
|
157 |
-
|
158 |
-
tmp =
|
159 |
if '\ufffd' not in tmp:
|
160 |
out_str += tmp
|
161 |
yield out_str.strip()
|
@@ -163,7 +187,7 @@ def evaluate_eng(
|
|
163 |
|
164 |
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
165 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
166 |
-
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
167 |
del out
|
168 |
del state
|
169 |
gc.collect()
|
@@ -172,11 +196,11 @@ def evaluate_eng(
|
|
172 |
|
173 |
def evaluate_chn(
|
174 |
ctx,
|
175 |
-
token_count=
|
176 |
temperature=1.0,
|
177 |
-
top_p=0.
|
178 |
-
presencePenalty=0.
|
179 |
-
countPenalty=0.
|
180 |
):
|
181 |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
182 |
alpha_frequency = countPenalty,
|
@@ -190,22 +214,30 @@ def evaluate_chn(
|
|
190 |
occurrence = {}
|
191 |
state = copy.deepcopy(state_chn)
|
192 |
for i in range(int(token_count)):
|
193 |
-
|
|
|
194 |
for n in occurrence:
|
195 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
196 |
|
197 |
-
token =
|
198 |
if token in args.token_stop:
|
199 |
break
|
200 |
all_tokens += [token]
|
201 |
for xxx in occurrence:
|
202 |
occurrence[xxx] *= penalty_decay
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
if token not in occurrence:
|
204 |
-
occurrence[token] =
|
205 |
else:
|
206 |
-
occurrence[token] +=
|
207 |
-
|
208 |
-
tmp =
|
209 |
if '\ufffd' not in tmp:
|
210 |
out_str += tmp
|
211 |
yield out_str.strip()
|
@@ -213,57 +245,7 @@ def evaluate_chn(
|
|
213 |
|
214 |
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
215 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
216 |
-
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
217 |
-
del out
|
218 |
-
del state
|
219 |
-
gc.collect()
|
220 |
-
torch.cuda.empty_cache()
|
221 |
-
yield out_str.strip()
|
222 |
-
|
223 |
-
def evaluate_wyw(
|
224 |
-
ctx,
|
225 |
-
token_count=gen_limit,
|
226 |
-
temperature=1.0,
|
227 |
-
top_p=0.3,
|
228 |
-
presencePenalty=0.3,
|
229 |
-
countPenalty=0.3,
|
230 |
-
):
|
231 |
-
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
232 |
-
alpha_frequency = countPenalty,
|
233 |
-
alpha_presence = presencePenalty,
|
234 |
-
token_ban = [], # ban the generation of some tokens
|
235 |
-
token_stop = [0]) # stop generation whenever you see any token here
|
236 |
-
ctx = qa_prompt(ctx)
|
237 |
-
all_tokens = []
|
238 |
-
out_last = 0
|
239 |
-
out_str = ''
|
240 |
-
occurrence = {}
|
241 |
-
state = copy.deepcopy(state_wyw)
|
242 |
-
for i in range(int(token_count)):
|
243 |
-
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
|
244 |
-
for n in occurrence:
|
245 |
-
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
246 |
-
|
247 |
-
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
248 |
-
if token in args.token_stop:
|
249 |
-
break
|
250 |
-
all_tokens += [token]
|
251 |
-
for xxx in occurrence:
|
252 |
-
occurrence[xxx] *= penalty_decay
|
253 |
-
if token not in occurrence:
|
254 |
-
occurrence[token] = 1
|
255 |
-
else:
|
256 |
-
occurrence[token] += 1
|
257 |
-
|
258 |
-
tmp = pipeline.decode(all_tokens[out_last:])
|
259 |
-
if '\ufffd' not in tmp:
|
260 |
-
out_str += tmp
|
261 |
-
yield out_str.strip()
|
262 |
-
out_last = i + 1
|
263 |
-
|
264 |
-
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
265 |
-
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
266 |
-
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
267 |
del out
|
268 |
del state
|
269 |
gc.collect()
|
@@ -292,36 +274,163 @@ examples_eng = [
|
|
292 |
["Write an outline for a fantasy novel where dreams can alter reality.", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
293 |
["Can fish get thirsty?", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
294 |
["Write a Bash script to check disk usage and send alerts if it's too high.", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
295 |
-
["Write a simple
|
296 |
]
|
297 |
|
298 |
examples_chn = [
|
299 |
["怎样写一个在火星上的吸血鬼的有趣故事?", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
300 |
["比较苹果和谷歌的商业模式。", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
301 |
["鱼会口渴吗?", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
302 |
-
["以 JSON
|
303 |
["编写一个Bash脚本来检查磁盘使用情况,如果使用量过高则发送警报。", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
304 |
["用HTML编写一个简单的网站。当用户点击按钮时,从4个笑话的列表中随机显示一个笑话。", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
305 |
]
|
306 |
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
with gr.Tab("=== Base Model (Raw Generation) ==="):
|
321 |
-
gr.Markdown(f"This is [RWKV-6](https://huggingface.co/BlinkDL/rwkv-6-world)
|
322 |
with gr.Row():
|
323 |
with gr.Column():
|
324 |
-
prompt = gr.Textbox(lines=2, label="
|
325 |
token_count = gr.Slider(10, gen_limit, label="Max Tokens", step=10, value=gen_limit)
|
326 |
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
|
327 |
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
|
@@ -332,10 +441,68 @@ with gr.Blocks(title=title) as demo:
|
|
332 |
submit = gr.Button("Submit", variant="primary")
|
333 |
clear = gr.Button("Clear", variant="secondary")
|
334 |
output = gr.Textbox(label="Output", lines=30)
|
335 |
-
data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, samples_per_page=50, label="
|
336 |
submit.click(evaluate, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
|
337 |
clear.click(lambda: None, [], [output])
|
338 |
data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])
|
339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
demo.queue(concurrency_count=1, max_size=10)
|
341 |
-
demo.launch(share=False)
|
|
|
1 |
+
import os, copy
|
2 |
+
os.environ["RWKV_JIT_ON"] = '1'
|
3 |
+
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
|
4 |
+
# make sure cuda dir is in the same level as modeling_rwkv.py
|
5 |
+
from modeling_rwkv import RWKV
|
6 |
+
|
7 |
+
import gc, re
|
8 |
import gradio as gr
|
9 |
+
import base64
|
10 |
+
from io import BytesIO
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
from datetime import datetime
|
14 |
+
from transformers import CLIPImageProcessor
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
from pynvml import *
|
17 |
nvmlInit()
|
18 |
gpu_h = nvmlDeviceGetHandleByIndex(0)
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
|
21 |
+
ctx_limit = 2500
|
22 |
gen_limit = 500
|
23 |
gen_limit_long = 800
|
24 |
+
ENABLE_VISUAL = False
|
25 |
|
26 |
+
########################## text rwkv ################################################################
|
27 |
+
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
28 |
|
29 |
+
title_v6 = "RWKV-x060-World-3B-v2.1-20240417-ctx4096"
|
30 |
+
model_path_v6 = hf_hub_download(repo_id="BlinkDL/rwkv-6-world", filename=f"{title_v6}.pth")
|
31 |
+
# model_path_v6 = '/mnt/e/RWKV-Runner/models/rwkv-final-v6-2.1-3b' # conda activate torch2; cd /mnt/program/_RWKV_/_ref_/_gradio_/RWKV-Gradio-1; python app.py
|
32 |
+
model_v6 = RWKV(model=model_path_v6, strategy='cuda fp16')
|
33 |
+
pipeline_v6 = PIPELINE(model_v6, "rwkv_vocab_v20230424")
|
34 |
|
35 |
+
args = model_v6.args
|
36 |
+
eng_name = 'rwkv-x060-eng_single_round_qa-3B-20240516-ctx2048'
|
37 |
+
chn_name = 'rwkv-x060-chn_single_round_qa-3B-20240516-ctx2048'
|
|
|
38 |
|
39 |
+
# state_eng_raw = torch.load(f'/mnt/e/RWKV-Runner/models/{eng_name}.pth', map_location=torch.device('cpu'))
|
40 |
+
# state_chn_raw = torch.load(f'/mnt/e/RWKV-Runner/models/{chn_name}.pth', map_location=torch.device('cpu'))
|
41 |
|
|
|
|
|
42 |
eng_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{eng_name}.pth")
|
|
|
|
|
|
|
|
|
43 |
chn_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{chn_name}.pth")
|
44 |
+
state_eng_raw = torch.load(eng_file, map_location=torch.device('cpu'))
|
45 |
+
state_chn_raw = torch.load(chn_file, map_location=torch.device('cpu'))
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
state_eng = [None] * args.n_layer * 3
|
48 |
+
state_chn = [None] * args.n_layer * 3
|
49 |
for i in range(args.n_layer):
|
50 |
+
dd = model_v6.strategy[i]
|
51 |
dev = dd.device
|
52 |
atype = dd.atype
|
53 |
state_eng[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
|
|
|
|
|
|
54 |
state_chn[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
55 |
+
state_eng[i*3+1] = state_eng_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
|
56 |
state_chn[i*3+1] = state_chn_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
|
57 |
+
state_eng[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
58 |
state_chn[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
59 |
|
60 |
+
penalty_decay = 0.996
|
61 |
+
|
62 |
+
if ENABLE_VISUAL:
|
63 |
+
title = "RWKV-5-World-1B5-v2-20231025-ctx4096"
|
64 |
+
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-5-world", filename=f"{title}.pth")
|
65 |
+
model = RWKV(model=model_path, strategy='cuda fp16')
|
66 |
+
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
|
67 |
|
68 |
def generate_prompt(instruction, input=""):
|
69 |
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
|
|
78 |
instruction = re.sub(r'\n+', '\n', instruction)
|
79 |
return f"User: {instruction}\n\nAssistant:"""
|
80 |
|
|
|
|
|
81 |
def evaluate(
|
82 |
ctx,
|
83 |
+
token_count=200,
|
84 |
temperature=1.0,
|
85 |
+
top_p=0.7,
|
86 |
+
presencePenalty = 0.1,
|
87 |
+
countPenalty = 0.1,
|
88 |
):
|
89 |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
90 |
alpha_frequency = countPenalty,
|
|
|
98 |
occurrence = {}
|
99 |
state = None
|
100 |
for i in range(int(token_count)):
|
101 |
+
input_ids = pipeline_v6.encode(ctx)[-ctx_limit:] if i == 0 else [token]
|
102 |
+
out, state = model_v6.forward(tokens=input_ids, state=state)
|
103 |
for n in occurrence:
|
104 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
105 |
|
106 |
+
token = pipeline_v6.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
107 |
if token in args.token_stop:
|
108 |
break
|
109 |
all_tokens += [token]
|
110 |
for xxx in occurrence:
|
111 |
occurrence[xxx] *= penalty_decay
|
112 |
+
|
113 |
+
ttt = pipeline_v6.decode([token])
|
114 |
+
www = 1
|
115 |
+
if ttt in ' \t0123456789':
|
116 |
+
www = 0
|
117 |
+
#elif ttt in '\r\n,.;?!"\':+-*/=#@$%^&_`~|<>\\()[]{},。;“”:?!()【】':
|
118 |
+
# www = 0.5
|
119 |
if token not in occurrence:
|
120 |
+
occurrence[token] = www
|
121 |
else:
|
122 |
+
occurrence[token] += www
|
123 |
+
|
124 |
+
tmp = pipeline_v6.decode(all_tokens[out_last:])
|
125 |
if '\ufffd' not in tmp:
|
126 |
out_str += tmp
|
127 |
yield out_str.strip()
|
|
|
129 |
|
130 |
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
131 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
132 |
+
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
133 |
del out
|
134 |
del state
|
135 |
gc.collect()
|
|
|
138 |
|
139 |
def evaluate_eng(
|
140 |
ctx,
|
141 |
+
token_count=200,
|
142 |
temperature=1.0,
|
143 |
+
top_p=0.7,
|
144 |
+
presencePenalty = 0.1,
|
145 |
+
countPenalty = 0.1,
|
146 |
):
|
147 |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
148 |
alpha_frequency = countPenalty,
|
|
|
156 |
occurrence = {}
|
157 |
state = copy.deepcopy(state_eng)
|
158 |
for i in range(int(token_count)):
|
159 |
+
input_ids = pipeline_v6.encode(ctx)[-ctx_limit:] if i == 0 else [token]
|
160 |
+
out, state = model_v6.forward(tokens=input_ids, state=state)
|
161 |
for n in occurrence:
|
162 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
163 |
|
164 |
+
token = pipeline_v6.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
165 |
if token in args.token_stop:
|
166 |
break
|
167 |
all_tokens += [token]
|
168 |
for xxx in occurrence:
|
169 |
occurrence[xxx] *= penalty_decay
|
170 |
+
|
171 |
+
ttt = pipeline_v6.decode([token])
|
172 |
+
www = 1
|
173 |
+
if ttt in ' \t0123456789':
|
174 |
+
www = 0
|
175 |
+
#elif ttt in '\r\n,.;?!"\':+-*/=#@$%^&_`~|<>\\()[]{},。;“”:?!()【】':
|
176 |
+
# www = 0.5
|
177 |
if token not in occurrence:
|
178 |
+
occurrence[token] = www
|
179 |
else:
|
180 |
+
occurrence[token] += www
|
181 |
+
|
182 |
+
tmp = pipeline_v6.decode(all_tokens[out_last:])
|
183 |
if '\ufffd' not in tmp:
|
184 |
out_str += tmp
|
185 |
yield out_str.strip()
|
|
|
187 |
|
188 |
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
189 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
190 |
+
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
191 |
del out
|
192 |
del state
|
193 |
gc.collect()
|
|
|
196 |
|
197 |
def evaluate_chn(
|
198 |
ctx,
|
199 |
+
token_count=200,
|
200 |
temperature=1.0,
|
201 |
+
top_p=0.7,
|
202 |
+
presencePenalty = 0.1,
|
203 |
+
countPenalty = 0.1,
|
204 |
):
|
205 |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
206 |
alpha_frequency = countPenalty,
|
|
|
214 |
occurrence = {}
|
215 |
state = copy.deepcopy(state_chn)
|
216 |
for i in range(int(token_count)):
|
217 |
+
input_ids = pipeline_v6.encode(ctx)[-ctx_limit:] if i == 0 else [token]
|
218 |
+
out, state = model_v6.forward(tokens=input_ids, state=state)
|
219 |
for n in occurrence:
|
220 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
221 |
|
222 |
+
token = pipeline_v6.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
223 |
if token in args.token_stop:
|
224 |
break
|
225 |
all_tokens += [token]
|
226 |
for xxx in occurrence:
|
227 |
occurrence[xxx] *= penalty_decay
|
228 |
+
|
229 |
+
ttt = pipeline_v6.decode([token])
|
230 |
+
www = 1
|
231 |
+
if ttt in ' \t0123456789':
|
232 |
+
www = 0
|
233 |
+
#elif ttt in '\r\n,.;?!"\':+-*/=#@$%^&_`~|<>\\()[]{},。;“”:?!()【】':
|
234 |
+
# www = 0.5
|
235 |
if token not in occurrence:
|
236 |
+
occurrence[token] = www
|
237 |
else:
|
238 |
+
occurrence[token] += www
|
239 |
+
|
240 |
+
tmp = pipeline_v6.decode(all_tokens[out_last:])
|
241 |
if '\ufffd' not in tmp:
|
242 |
out_str += tmp
|
243 |
yield out_str.strip()
|
|
|
245 |
|
246 |
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
247 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
248 |
+
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
del out
|
250 |
del state
|
251 |
gc.collect()
|
|
|
274 |
["Write an outline for a fantasy novel where dreams can alter reality.", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
275 |
["Can fish get thirsty?", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
276 |
["Write a Bash script to check disk usage and send alerts if it's too high.", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
277 |
+
["Write a simple webpage. When a user clicks the button, it shows a random joke from a list of 4 jokes.", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
278 |
]
|
279 |
|
280 |
examples_chn = [
|
281 |
["怎样写一个在火星上的吸血鬼的有趣故事?", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
282 |
["比较苹果和谷歌的商业模式。", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
283 |
["鱼会口渴吗?", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
284 |
+
["以 JSON 格式列举���京的美食。", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
285 |
["编写一个Bash脚本来检查磁盘使用情况,如果使用量过高则发送警报。", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
286 |
["用HTML编写一个简单的网站。当用户点击按钮时,从4个笑话的列表中随机显示一个笑话。", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
287 |
]
|
288 |
|
289 |
+
if ENABLE_VISUAL:
|
290 |
+
########################## visual rwkv ################################################################
|
291 |
+
visual_title = 'ViusualRWKV-v5'
|
292 |
+
rwkv_remote_path = "rwkv1b5-vitl336p14-577token_mix665k_rwkv.pth"
|
293 |
+
vision_remote_path = "rwkv1b5-vitl336p14-577token_mix665k_visual.pth"
|
294 |
+
vision_tower_name = 'openai/clip-vit-large-patch14-336'
|
295 |
+
|
296 |
+
model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=rwkv_remote_path)
|
297 |
+
visual_rwkv = RWKV(model=model_path, strategy='cuda fp16')
|
298 |
+
|
299 |
+
##########################################################################
|
300 |
+
from modeling_vision import VisionEncoder, VisionEncoderConfig
|
301 |
+
config = VisionEncoderConfig(n_embd=model.args.n_embd,
|
302 |
+
vision_tower_name=vision_tower_name,
|
303 |
+
grid_size=-1)
|
304 |
+
visual_encoder = VisionEncoder(config)
|
305 |
+
vision_local_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=vision_remote_path)
|
306 |
+
vision_state_dict = torch.load(vision_local_path, map_location='cpu')
|
307 |
+
visual_encoder.load_state_dict(vision_state_dict)
|
308 |
+
image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name)
|
309 |
+
visual_encoder = visual_encoder.to(device)
|
310 |
+
##########################################################################
|
311 |
+
def visual_generate_prompt(instruction):
|
312 |
+
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
313 |
+
return f"\n{instruction}\n\nAssistant:"
|
314 |
+
|
315 |
+
def generate(
|
316 |
+
ctx,
|
317 |
+
image_state,
|
318 |
+
token_count=200,
|
319 |
+
temperature=1.0,
|
320 |
+
top_p=0.1,
|
321 |
+
presencePenalty = 0.0,
|
322 |
+
countPenalty = 1.0,
|
323 |
+
):
|
324 |
+
args = PIPELINE_ARGS(temperature = 1.0, top_p = 0.1,
|
325 |
+
alpha_frequency = 1.0,
|
326 |
+
alpha_presence = 0.0,
|
327 |
+
token_ban = [], # ban the generation of some tokens
|
328 |
+
token_stop = [0, 261]) # stop generation whenever you see any token here
|
329 |
+
ctx = ctx.strip()
|
330 |
+
all_tokens = []
|
331 |
+
out_last = 0
|
332 |
+
out_str = ''
|
333 |
+
occurrence = {}
|
334 |
+
for i in range(int(token_count)):
|
335 |
+
if i == 0:
|
336 |
+
input_ids = pipeline.encode(ctx)[-ctx_limit:]
|
337 |
+
out, state = visual_rwkv.forward(tokens=input_ids, state=image_state)
|
338 |
+
else:
|
339 |
+
input_ids = [token]
|
340 |
+
out, state = visual_rwkv.forward(tokens=input_ids, state=state)
|
341 |
+
for n in occurrence:
|
342 |
+
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
343 |
+
|
344 |
+
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
345 |
+
if token in args.token_stop:
|
346 |
+
break
|
347 |
+
all_tokens += [token]
|
348 |
+
for xxx in occurrence:
|
349 |
+
occurrence[xxx] *= 0.994
|
350 |
+
if token not in occurrence:
|
351 |
+
occurrence[token] = 1
|
352 |
+
else:
|
353 |
+
occurrence[token] += 1
|
354 |
+
|
355 |
+
tmp = pipeline.decode(all_tokens[out_last:])
|
356 |
+
if '\ufffd' not in tmp:
|
357 |
+
out_str += tmp
|
358 |
+
yield out_str.strip()
|
359 |
+
out_last = i + 1
|
360 |
+
|
361 |
+
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
362 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
363 |
+
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
364 |
+
del out
|
365 |
+
del state
|
366 |
+
gc.collect()
|
367 |
+
torch.cuda.empty_cache()
|
368 |
+
yield out_str.strip()
|
369 |
+
|
370 |
+
|
371 |
+
##########################################################################
|
372 |
+
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
373 |
+
visual_examples = [
|
374 |
+
[
|
375 |
+
f"{cur_dir}/examples_pizza.jpg",
|
376 |
+
"What are steps to cook it?"
|
377 |
+
],
|
378 |
+
[
|
379 |
+
f"{cur_dir}/examples_bluejay.jpg",
|
380 |
+
"what is the name of this bird?",
|
381 |
+
],
|
382 |
+
[
|
383 |
+
f"{cur_dir}/examples_woman_and_dog.png",
|
384 |
+
"describe this image",
|
385 |
+
],
|
386 |
+
]
|
387 |
+
|
388 |
+
|
389 |
+
def pil_image_to_base64(pil_image):
|
390 |
+
buffered = BytesIO()
|
391 |
+
pil_image.save(buffered, format="JPEG") # You can change the format as needed (JPEG, PNG, etc.)
|
392 |
+
# Encodes the image data into base64 format as a bytes object
|
393 |
+
base64_image = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
394 |
+
return base64_image
|
395 |
+
|
396 |
+
image_cache = {}
|
397 |
+
ln0_weight = model.w['blocks.0.ln0.weight'].to(torch.float32).to(device)
|
398 |
+
ln0_bias = model.w['blocks.0.ln0.bias'].to(torch.float32).to(device)
|
399 |
+
def compute_image_state(image):
|
400 |
+
base64_image = pil_image_to_base64(image)
|
401 |
+
if base64_image in image_cache:
|
402 |
+
image_state = image_cache[base64_image]
|
403 |
+
else:
|
404 |
+
image = image_processor(images=image.convert('RGB'), return_tensors='pt')['pixel_values'].to(device)
|
405 |
+
image_features = visual_encoder.encode_images(image.unsqueeze(0)).squeeze(0) # [L, D]
|
406 |
+
# apply layer norm to image feature, very important
|
407 |
+
image_features = F.layer_norm(image_features,
|
408 |
+
(image_features.shape[-1],),
|
409 |
+
weight=ln0_weight,
|
410 |
+
bias=ln0_bias)
|
411 |
+
_, image_state = model.forward(embs=image_features, state=None)
|
412 |
+
image_cache[base64_image] = image_state
|
413 |
+
return image_state
|
414 |
+
|
415 |
+
def chatbot(image, question):
|
416 |
+
if image is None:
|
417 |
+
yield "Please upload an image."
|
418 |
+
return
|
419 |
+
image_state = compute_image_state(image)
|
420 |
+
input_text = visual_generate_prompt(question)
|
421 |
+
for output in generate(input_text, image_state):
|
422 |
+
yield output
|
423 |
+
|
424 |
+
|
425 |
+
##################################################################################################################
|
426 |
+
with gr.Blocks(title=title_v6) as demo:
|
427 |
+
gr.HTML(f"<div style=\"text-align: center;\">\n<h1>{title_v6}</h1>\n</div>")
|
428 |
|
429 |
with gr.Tab("=== Base Model (Raw Generation) ==="):
|
430 |
+
gr.Markdown(f"This is [RWKV-6 World v2](https://huggingface.co/BlinkDL/rwkv-6-world) - a 100% attention-free RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM). Supports 100+ world languages and code. Check [300+ Github RWKV projects](https://github.com/search?o=desc&p=1&q=rwkv&s=updated&type=Repositories). *** Can try examples (bottom of page) *** (can edit them). Demo limited to ctxlen {ctx_limit}.")
|
431 |
with gr.Row():
|
432 |
with gr.Column():
|
433 |
+
prompt = gr.Textbox(lines=2, label="Prompt", value="Assistant: How can we craft an engaging story featuring vampires on Mars? Let's think step by step and provide an expert response.")
|
434 |
token_count = gr.Slider(10, gen_limit, label="Max Tokens", step=10, value=gen_limit)
|
435 |
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
|
436 |
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
|
|
|
441 |
submit = gr.Button("Submit", variant="primary")
|
442 |
clear = gr.Button("Clear", variant="secondary")
|
443 |
output = gr.Textbox(label="Output", lines=30)
|
444 |
+
data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, samples_per_page=50, label="Example Instructions", headers=["Prompt", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
|
445 |
submit.click(evaluate, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
|
446 |
clear.click(lambda: None, [], [output])
|
447 |
data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])
|
448 |
|
449 |
+
with gr.Tab("=== English Q/A ==="):
|
450 |
+
gr.Markdown(f"This is [RWKV-6](https://huggingface.co/BlinkDL/rwkv-6-world) state-tuned to [English Q/A](https://huggingface.co/BlinkDL/temp-latest-training-models/blob/main/{eng_name}.pth). RWKV is a 100% attention-free RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM), and we have [300+ Github RWKV projects](https://github.com/search?o=desc&p=1&q=rwkv&s=updated&type=Repositories). Demo limited to ctxlen {ctx_limit}.")
|
451 |
+
with gr.Row():
|
452 |
+
with gr.Column():
|
453 |
+
prompt = gr.Textbox(lines=2, label="Prompt", value="How can I craft an engaging story featuring vampires on Mars?")
|
454 |
+
token_count = gr.Slider(10, gen_limit_long, label="Max Tokens", step=10, value=gen_limit_long)
|
455 |
+
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
|
456 |
+
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.2)
|
457 |
+
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.3)
|
458 |
+
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.3)
|
459 |
+
with gr.Column():
|
460 |
+
with gr.Row():
|
461 |
+
submit = gr.Button("Submit", variant="primary")
|
462 |
+
clear = gr.Button("Clear", variant="secondary")
|
463 |
+
output = gr.Textbox(label="Output", lines=30)
|
464 |
+
data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples_eng, samples_per_page=50, label="Examples", headers=["Prompt", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
|
465 |
+
submit.click(evaluate_eng, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
|
466 |
+
clear.click(lambda: None, [], [output])
|
467 |
+
data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])
|
468 |
+
|
469 |
+
with gr.Tab("=== Chinese Q/A ==="):
|
470 |
+
gr.Markdown(f"This is [RWKV-6](https://huggingface.co/BlinkDL/rwkv-6-world) state-tuned to [Chinese Q/A](https://huggingface.co/BlinkDL/temp-latest-training-models/blob/main/{chn_name}.pth). RWKV is a 100% attention-free RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM), and we have [300+ Github RWKV projects](https://github.com/search?o=desc&p=1&q=rwkv&s=updated&type=Repositories). Demo limited to ctxlen {ctx_limit}.")
|
471 |
+
with gr.Row():
|
472 |
+
with gr.Column():
|
473 |
+
prompt = gr.Textbox(lines=2, label="Prompt", value="怎样写一个在火星上的吸血鬼的有趣故事?")
|
474 |
+
token_count = gr.Slider(10, gen_limit_long, label="Max Tokens", step=10, value=gen_limit_long)
|
475 |
+
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
|
476 |
+
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.2)
|
477 |
+
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.3)
|
478 |
+
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.3)
|
479 |
+
with gr.Column():
|
480 |
+
with gr.Row():
|
481 |
+
submit = gr.Button("Submit", variant="primary")
|
482 |
+
clear = gr.Button("Clear", variant="secondary")
|
483 |
+
output = gr.Textbox(label="Output", lines=30)
|
484 |
+
data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples_chn, samples_per_page=50, label="Examples", headers=["Prompt", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
|
485 |
+
submit.click(evaluate_chn, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
|
486 |
+
clear.click(lambda: None, [], [output])
|
487 |
+
data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])
|
488 |
+
|
489 |
+
if ENABLE_VISUAL:
|
490 |
+
with gr.Tab("Visual RWKV-5 1.5B"):
|
491 |
+
with gr.Row():
|
492 |
+
with gr.Column():
|
493 |
+
image = gr.Image(type='pil', label="Image")
|
494 |
+
with gr.Column():
|
495 |
+
prompt = gr.Textbox(lines=8, label="Prompt",
|
496 |
+
value="Render a clear and concise summary of the photo.")
|
497 |
+
with gr.Row():
|
498 |
+
submit = gr.Button("Submit", variant="primary")
|
499 |
+
clear = gr.Button("Clear", variant="secondary")
|
500 |
+
with gr.Column():
|
501 |
+
output = gr.Textbox(label="Output", lines=10)
|
502 |
+
data = gr.Dataset(components=[image, prompt], samples=visual_examples, label="Examples", headers=["Image", "Prompt"])
|
503 |
+
submit.click(chatbot, [image, prompt], [output])
|
504 |
+
clear.click(lambda: None, [], [output])
|
505 |
+
data.click(lambda x: x, [data], [image, prompt])
|
506 |
+
|
507 |
demo.queue(concurrency_count=1, max_size=10)
|
508 |
+
demo.launch(share=False)
|